/** ****************************************************************************** * @file stm32h7xx_ll_spi.h * @author MCD Application Team * @brief Header file of SPI LL module. ****************************************************************************** * @attention * * Copyright (c) 2017 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef STM32H7xx_LL_SPI_H #define STM32H7xx_LL_SPI_H #ifdef __cplusplus extern "C" { #endif /* Includes ------------------------------------------------------------------*/ #include "stm32h7xx.h" /** @addtogroup STM32H7xx_LL_Driver * @{ */ #if defined(SPI1) || defined(SPI2) || defined(SPI3) || defined(SPI4) || defined(SPI5) || defined(SPI6) /** @defgroup SPI_LL SPI * @{ */ /* Private variables ---------------------------------------------------------*/ /* Private constants ---------------------------------------------------------*/ /* Private macros ------------------------------------------------------------*/ /** @defgroup SPI_LL_Private_Macros SPI Private Macros * @{ */ /** * @} */ /* Exported types ------------------------------------------------------------*/ #if defined(USE_FULL_LL_DRIVER) /** @defgroup SPI_LL_Exported_Types SPI Exported Types * @{ */ /** * @brief SPI Init structures definition */ typedef struct { uint32_t TransferDirection; /*!< Specifies the SPI unidirectional or bidirectional data mode. This parameter can be a value of @ref SPI_LL_EC_TRANSFER_MODE. This feature can be modified afterwards using unitary function @ref LL_SPI_SetTransferDirection().*/ uint32_t Mode; /*!< Specifies the SPI mode (Master/Slave). This parameter can be a value of @ref SPI_LL_EC_MODE. This feature can be modified afterwards using unitary function @ref LL_SPI_SetMode().*/ uint32_t DataWidth; /*!< Specifies the SPI data width. This parameter can be a value of @ref SPI_LL_EC_DATAWIDTH. This feature can be modified afterwards using unitary function @ref LL_SPI_SetDataWidth().*/ uint32_t ClockPolarity; /*!< Specifies the serial clock steady state. This parameter can be a value of @ref SPI_LL_EC_POLARITY. This feature can be modified afterwards using unitary function @ref LL_SPI_SetClockPolarity().*/ uint32_t ClockPhase; /*!< Specifies the clock active edge for the bit capture. This parameter can be a value of @ref SPI_LL_EC_PHASE. This feature can be modified afterwards using unitary function @ref LL_SPI_SetClockPhase().*/ uint32_t NSS; /*!< Specifies whether the NSS signal is managed by hardware (NSS pin) or by software using the SSI bit. This parameter can be a value of @ref SPI_LL_EC_NSS_MODE. This feature can be modified afterwards using unitary function @ref LL_SPI_SetNSSMode().*/ uint32_t BaudRate; /*!< Specifies the BaudRate prescaler value which will be used to configure the transmit and receive SCK clock. This parameter can be a value of @ref SPI_LL_EC_BAUDRATEPRESCALER. @note The communication clock is derived from the master clock. The slave clock does not need to be set. This feature can be modified afterwards using unitary function @ref LL_SPI_SetBaudRatePrescaler().*/ uint32_t BitOrder; /*!< Specifies whether data transfers start from MSB or LSB bit. This parameter can be a value of @ref SPI_LL_EC_BIT_ORDER. This feature can be modified afterwards using unitary function @ref LL_SPI_SetTransferBitOrder().*/ uint32_t CRCCalculation; /*!< Specifies if the CRC calculation is enabled or not. This parameter can be a value of @ref SPI_LL_EC_CRC_CALCULATION. This feature can be modified afterwards using unitary functions @ref LL_SPI_EnableCRC() and @ref LL_SPI_DisableCRC().*/ uint32_t CRCPoly; /*!< Specifies the polynomial used for the CRC calculation. This parameter must be a number between Min_Data = 0x00 and Max_Data = 0xFFFFFFFF. This feature can be modified afterwards using unitary function @ref LL_SPI_SetCRCPolynomial().*/ } LL_SPI_InitTypeDef; /** * @} */ #endif /*USE_FULL_LL_DRIVER*/ /* Exported types ------------------------------------------------------------*/ /* Exported constants --------------------------------------------------------*/ /** @defgroup SPI_LL_Exported_Constants SPI Exported Constants * @{ */ /** @defgroup SPI_LL_EC_GET_FLAG Get Flags Defines * @brief Flags defines which can be used with LL_SPI_ReadReg function * @{ */ #define LL_SPI_SR_RXP (SPI_SR_RXP) #define LL_SPI_SR_TXP (SPI_SR_TXP) #define LL_SPI_SR_DXP (SPI_SR_DXP) #define LL_SPI_SR_EOT (SPI_SR_EOT) #define LL_SPI_SR_TXTF (SPI_SR_TXTF) #define LL_SPI_SR_UDR (SPI_SR_UDR) #define LL_SPI_SR_CRCE (SPI_SR_CRCE) #define LL_SPI_SR_MODF (SPI_SR_MODF) #define LL_SPI_SR_OVR (SPI_SR_OVR) #define LL_SPI_SR_TIFRE (SPI_SR_TIFRE) #define LL_SPI_SR_TSERF (SPI_SR_TSERF) #define LL_SPI_SR_SUSP (SPI_SR_SUSP) #define LL_SPI_SR_TXC (SPI_SR_TXC) #define LL_SPI_SR_RXWNE (SPI_SR_RXWNE) /** * @} */ /** @defgroup SPI_LL_EC_IT IT Defines * @brief IT defines which can be used with LL_SPI_ReadReg and LL_SPI_WriteReg functions * @{ */ #define LL_SPI_IER_RXPIE (SPI_IER_RXPIE) #define LL_SPI_IER_TXPIE (SPI_IER_TXPIE) #define LL_SPI_IER_DXPIE (SPI_IER_DXPIE) #define LL_SPI_IER_EOTIE (SPI_IER_EOTIE) #define LL_SPI_IER_TXTFIE (SPI_IER_TXTFIE) #define LL_SPI_IER_UDRIE (SPI_IER_UDRIE) #define LL_SPI_IER_OVRIE (SPI_IER_OVRIE) #define LL_SPI_IER_CRCEIE (SPI_IER_CRCEIE) #define LL_SPI_IER_TIFREIE (SPI_IER_TIFREIE) #define LL_SPI_IER_MODFIE (SPI_IER_MODFIE) #define LL_SPI_IER_TSERFIE (SPI_IER_TSERFIE) /** * @} */ /** @defgroup SPI_LL_EC_MODE Mode * @{ */ #define LL_SPI_MODE_MASTER (SPI_CFG2_MASTER) #define LL_SPI_MODE_SLAVE (0x00000000UL) /** * @} */ /** @defgroup SPI_LL_EC_SS_LEVEL SS Level * @{ */ #define LL_SPI_SS_LEVEL_HIGH (SPI_CR1_SSI) #define LL_SPI_SS_LEVEL_LOW (0x00000000UL) /** * @} */ /** @defgroup SPI_LL_EC_SS_IDLENESS SS Idleness * @{ */ #define LL_SPI_SS_IDLENESS_00CYCLE (0x00000000UL) #define LL_SPI_SS_IDLENESS_01CYCLE (SPI_CFG2_MSSI_0) #define LL_SPI_SS_IDLENESS_02CYCLE (SPI_CFG2_MSSI_1) #define LL_SPI_SS_IDLENESS_03CYCLE (SPI_CFG2_MSSI_0 | SPI_CFG2_MSSI_1) #define LL_SPI_SS_IDLENESS_04CYCLE (SPI_CFG2_MSSI_2) #define LL_SPI_SS_IDLENESS_05CYCLE (SPI_CFG2_MSSI_2 | SPI_CFG2_MSSI_0) #define LL_SPI_SS_IDLENESS_06CYCLE (SPI_CFG2_MSSI_2 | SPI_CFG2_MSSI_1) #define LL_SPI_SS_IDLENESS_07CYCLE (SPI_CFG2_MSSI_2 | SPI_CFG2_MSSI_1 | SPI_CFG2_MSSI_0) #define LL_SPI_SS_IDLENESS_08CYCLE (SPI_CFG2_MSSI_3) #define LL_SPI_SS_IDLENESS_09CYCLE (SPI_CFG2_MSSI_3 | SPI_CFG2_MSSI_0) #define LL_SPI_SS_IDLENESS_10CYCLE (SPI_CFG2_MSSI_3 | SPI_CFG2_MSSI_1) #define LL_SPI_SS_IDLENESS_11CYCLE (SPI_CFG2_MSSI_3 | SPI_CFG2_MSSI_1 | SPI_CFG2_MSSI_0) #define LL_SPI_SS_IDLENESS_12CYCLE (SPI_CFG2_MSSI_3 | SPI_CFG2_MSSI_2) #define LL_SPI_SS_IDLENESS_13CYCLE (SPI_CFG2_MSSI_3 | SPI_CFG2_MSSI_2 | SPI_CFG2_MSSI_0) #define LL_SPI_SS_IDLENESS_14CYCLE (SPI_CFG2_MSSI_3 | SPI_CFG2_MSSI_2 | SPI_CFG2_MSSI_1) #define LL_SPI_SS_IDLENESS_15CYCLE (SPI_CFG2_MSSI_3\ | SPI_CFG2_MSSI_2 | SPI_CFG2_MSSI_1 | SPI_CFG2_MSSI_0) /** * @} */ /** @defgroup SPI_LL_EC_ID_IDLENESS Master Inter-Data Idleness * @{ */ #define LL_SPI_ID_IDLENESS_00CYCLE (0x00000000UL) #define LL_SPI_ID_IDLENESS_01CYCLE (SPI_CFG2_MIDI_0) #define LL_SPI_ID_IDLENESS_02CYCLE (SPI_CFG2_MIDI_1) #define LL_SPI_ID_IDLENESS_03CYCLE (SPI_CFG2_MIDI_0 | SPI_CFG2_MIDI_1) #define LL_SPI_ID_IDLENESS_04CYCLE (SPI_CFG2_MIDI_2) #define LL_SPI_ID_IDLENESS_05CYCLE (SPI_CFG2_MIDI_2 | SPI_CFG2_MIDI_0) #define LL_SPI_ID_IDLENESS_06CYCLE (SPI_CFG2_MIDI_2 | SPI_CFG2_MIDI_1) #define LL_SPI_ID_IDLENESS_07CYCLE (SPI_CFG2_MIDI_2 | SPI_CFG2_MIDI_1 | SPI_CFG2_MIDI_0) #define LL_SPI_ID_IDLENESS_08CYCLE (SPI_CFG2_MIDI_3) #define LL_SPI_ID_IDLENESS_09CYCLE (SPI_CFG2_MIDI_3 | SPI_CFG2_MIDI_0) #define LL_SPI_ID_IDLENESS_10CYCLE (SPI_CFG2_MIDI_3 | SPI_CFG2_MIDI_1) #define LL_SPI_ID_IDLENESS_11CYCLE (SPI_CFG2_MIDI_3 | SPI_CFG2_MIDI_1 | SPI_CFG2_MIDI_0) #define LL_SPI_ID_IDLENESS_12CYCLE (SPI_CFG2_MIDI_3 | SPI_CFG2_MIDI_2) #define LL_SPI_ID_IDLENESS_13CYCLE (SPI_CFG2_MIDI_3 | SPI_CFG2_MIDI_2 | SPI_CFG2_MIDI_0) #define LL_SPI_ID_IDLENESS_14CYCLE (SPI_CFG2_MIDI_3 | SPI_CFG2_MIDI_2 | SPI_CFG2_MIDI_1) #define LL_SPI_ID_IDLENESS_15CYCLE (SPI_CFG2_MIDI_3\ | SPI_CFG2_MIDI_2 | SPI_CFG2_MIDI_1 | SPI_CFG2_MIDI_0) /** * @} */ /** @defgroup SPI_LL_EC_TXCRCINIT_ALL TXCRC Init All * @{ */ #define LL_SPI_TXCRCINIT_ALL_ZERO_PATTERN (0x00000000UL) #define LL_SPI_TXCRCINIT_ALL_ONES_PATTERN (SPI_CR1_TCRCINI) /** * @} */ /** @defgroup SPI_LL_EC_RXCRCINIT_ALL RXCRC Init All * @{ */ #define LL_SPI_RXCRCINIT_ALL_ZERO_PATTERN (0x00000000UL) #define LL_SPI_RXCRCINIT_ALL_ONES_PATTERN (SPI_CR1_RCRCINI) /** * @} */ /** @defgroup SPI_LL_EC_UDR_CONFIG_REGISTER UDR Config Register * @{ */ #define LL_SPI_UDR_CONFIG_REGISTER_PATTERN (0x00000000UL) #define LL_SPI_UDR_CONFIG_LAST_RECEIVED (SPI_CFG1_UDRCFG_0) #define LL_SPI_UDR_CONFIG_LAST_TRANSMITTED (SPI_CFG1_UDRCFG_1) /** * @} */ /** @defgroup SPI_LL_EC_UDR_DETECT_BEGIN_DATA UDR Detect Begin Data * @{ */ #define LL_SPI_UDR_DETECT_BEGIN_DATA_FRAME (0x00000000UL) #define LL_SPI_UDR_DETECT_END_DATA_FRAME (SPI_CFG1_UDRDET_0) #define LL_SPI_UDR_DETECT_BEGIN_ACTIVE_NSS (SPI_CFG1_UDRDET_1) /** * @} */ /** @defgroup SPI_LL_EC_PROTOCOL Protocol * @{ */ #define LL_SPI_PROTOCOL_MOTOROLA (0x00000000UL) #define LL_SPI_PROTOCOL_TI (SPI_CFG2_SP_0) /** * @} */ /** @defgroup SPI_LL_EC_PHASE Phase * @{ */ #define LL_SPI_PHASE_1EDGE (0x00000000UL) #define LL_SPI_PHASE_2EDGE (SPI_CFG2_CPHA) /** * @} */ /** @defgroup SPI_LL_EC_POLARITY Polarity * @{ */ #define LL_SPI_POLARITY_LOW (0x00000000UL) #define LL_SPI_POLARITY_HIGH (SPI_CFG2_CPOL) /** * @} */ /** @defgroup SPI_LL_EC_NSS_POLARITY NSS Polarity * @{ */ #define LL_SPI_NSS_POLARITY_LOW (0x00000000UL) #define LL_SPI_NSS_POLARITY_HIGH (SPI_CFG2_SSIOP) /** * @} */ /** @defgroup SPI_LL_EC_BAUDRATEPRESCALER Baud Rate Prescaler * @{ */ #define LL_SPI_BAUDRATEPRESCALER_DIV2 (0x00000000UL) #define LL_SPI_BAUDRATEPRESCALER_DIV4 (SPI_CFG1_MBR_0) #define LL_SPI_BAUDRATEPRESCALER_DIV8 (SPI_CFG1_MBR_1) #define LL_SPI_BAUDRATEPRESCALER_DIV16 (SPI_CFG1_MBR_1 | SPI_CFG1_MBR_0) #define LL_SPI_BAUDRATEPRESCALER_DIV32 (SPI_CFG1_MBR_2) #define LL_SPI_BAUDRATEPRESCALER_DIV64 (SPI_CFG1_MBR_2 | SPI_CFG1_MBR_0) #define LL_SPI_BAUDRATEPRESCALER_DIV128 (SPI_CFG1_MBR_2 | SPI_CFG1_MBR_1) #define LL_SPI_BAUDRATEPRESCALER_DIV256 (SPI_CFG1_MBR_2 | SPI_CFG1_MBR_1 | SPI_CFG1_MBR_0) /** * @} */ /** @defgroup SPI_LL_EC_BIT_ORDER Bit Order * @{ */ #define LL_SPI_LSB_FIRST (SPI_CFG2_LSBFRST) #define LL_SPI_MSB_FIRST (0x00000000UL) /** * @} */ /** @defgroup SPI_LL_EC_TRANSFER_MODE Transfer Mode * @{ */ #define LL_SPI_FULL_DUPLEX (0x00000000UL) #define LL_SPI_SIMPLEX_TX (SPI_CFG2_COMM_0) #define LL_SPI_SIMPLEX_RX (SPI_CFG2_COMM_1) #define LL_SPI_HALF_DUPLEX_RX (SPI_CFG2_COMM_0|SPI_CFG2_COMM_1) #define LL_SPI_HALF_DUPLEX_TX (SPI_CFG2_COMM_0|SPI_CFG2_COMM_1|SPI_CR1_HDDIR) /** * @} */ /** @defgroup SPI_LL_EC_DATAWIDTH Data Width * @{ */ #define LL_SPI_DATAWIDTH_4BIT (SPI_CFG1_DSIZE_0 | SPI_CFG1_DSIZE_1) #define LL_SPI_DATAWIDTH_5BIT (SPI_CFG1_DSIZE_2) #define LL_SPI_DATAWIDTH_6BIT (SPI_CFG1_DSIZE_2 | SPI_CFG1_DSIZE_0) #define LL_SPI_DATAWIDTH_7BIT (SPI_CFG1_DSIZE_2 | SPI_CFG1_DSIZE_1) #define LL_SPI_DATAWIDTH_8BIT (SPI_CFG1_DSIZE_2 | SPI_CFG1_DSIZE_1 | SPI_CFG1_DSIZE_0) #define LL_SPI_DATAWIDTH_9BIT (SPI_CFG1_DSIZE_3) #define LL_SPI_DATAWIDTH_10BIT (SPI_CFG1_DSIZE_3 | SPI_CFG1_DSIZE_0) #define LL_SPI_DATAWIDTH_11BIT (SPI_CFG1_DSIZE_3 | SPI_CFG1_DSIZE_1) #define LL_SPI_DATAWIDTH_12BIT (SPI_CFG1_DSIZE_3 | SPI_CFG1_DSIZE_1 | SPI_CFG1_DSIZE_0) #define LL_SPI_DATAWIDTH_13BIT (SPI_CFG1_DSIZE_3 | SPI_CFG1_DSIZE_2) #define LL_SPI_DATAWIDTH_14BIT (SPI_CFG1_DSIZE_3 | SPI_CFG1_DSIZE_2 | SPI_CFG1_DSIZE_0) #define LL_SPI_DATAWIDTH_15BIT (SPI_CFG1_DSIZE_3 | SPI_CFG1_DSIZE_2 | SPI_CFG1_DSIZE_1) #define LL_SPI_DATAWIDTH_16BIT (SPI_CFG1_DSIZE_3\ | SPI_CFG1_DSIZE_2 | SPI_CFG1_DSIZE_1 | SPI_CFG1_DSIZE_0) #define LL_SPI_DATAWIDTH_17BIT (SPI_CFG1_DSIZE_4) #define LL_SPI_DATAWIDTH_18BIT (SPI_CFG1_DSIZE_4 | SPI_CFG1_DSIZE_0) #define LL_SPI_DATAWIDTH_19BIT (SPI_CFG1_DSIZE_4 | SPI_CFG1_DSIZE_1) #define LL_SPI_DATAWIDTH_20BIT (SPI_CFG1_DSIZE_4 | SPI_CFG1_DSIZE_0 | SPI_CFG1_DSIZE_1) #define LL_SPI_DATAWIDTH_21BIT (SPI_CFG1_DSIZE_4 | SPI_CFG1_DSIZE_2) #define LL_SPI_DATAWIDTH_22BIT (SPI_CFG1_DSIZE_4 | SPI_CFG1_DSIZE_2 | SPI_CFG1_DSIZE_0) #define LL_SPI_DATAWIDTH_23BIT (SPI_CFG1_DSIZE_4 | SPI_CFG1_DSIZE_2 | SPI_CFG1_DSIZE_1) #define LL_SPI_DATAWIDTH_24BIT (SPI_CFG1_DSIZE_4\ | SPI_CFG1_DSIZE_2 | SPI_CFG1_DSIZE_1 | SPI_CFG1_DSIZE_0) #define LL_SPI_DATAWIDTH_25BIT (SPI_CFG1_DSIZE_4 | SPI_CFG1_DSIZE_3) #define LL_SPI_DATAWIDTH_26BIT (SPI_CFG1_DSIZE_4 | SPI_CFG1_DSIZE_3 | SPI_CFG1_DSIZE_0) #define LL_SPI_DATAWIDTH_27BIT (SPI_CFG1_DSIZE_4 | SPI_CFG1_DSIZE_3 | SPI_CFG1_DSIZE_1) #define LL_SPI_DATAWIDTH_28BIT (SPI_CFG1_DSIZE_4\ | SPI_CFG1_DSIZE_3 | SPI_CFG1_DSIZE_1 | SPI_CFG1_DSIZE_0) #define LL_SPI_DATAWIDTH_29BIT (SPI_CFG1_DSIZE_4 | SPI_CFG1_DSIZE_3 | SPI_CFG1_DSIZE_2) #define LL_SPI_DATAWIDTH_30BIT (SPI_CFG1_DSIZE_4\ | SPI_CFG1_DSIZE_3 | SPI_CFG1_DSIZE_2 | SPI_CFG1_DSIZE_0) #define LL_SPI_DATAWIDTH_31BIT (SPI_CFG1_DSIZE_4\ | SPI_CFG1_DSIZE_3 | SPI_CFG1_DSIZE_2 | SPI_CFG1_DSIZE_1) #define LL_SPI_DATAWIDTH_32BIT (SPI_CFG1_DSIZE_4 | SPI_CFG1_DSIZE_3\ | SPI_CFG1_DSIZE_2 | SPI_CFG1_DSIZE_1 | SPI_CFG1_DSIZE_0) /** * @} */ /** @defgroup SPI_LL_EC_FIFO_TH FIFO Threshold * @{ */ #define LL_SPI_FIFO_TH_01DATA (0x00000000UL) #define LL_SPI_FIFO_TH_02DATA (SPI_CFG1_FTHLV_0) #define LL_SPI_FIFO_TH_03DATA (SPI_CFG1_FTHLV_1) #define LL_SPI_FIFO_TH_04DATA (SPI_CFG1_FTHLV_0 | SPI_CFG1_FTHLV_1) #define LL_SPI_FIFO_TH_05DATA (SPI_CFG1_FTHLV_2) #define LL_SPI_FIFO_TH_06DATA (SPI_CFG1_FTHLV_2 | SPI_CFG1_FTHLV_0) #define LL_SPI_FIFO_TH_07DATA (SPI_CFG1_FTHLV_2 | SPI_CFG1_FTHLV_1) #define LL_SPI_FIFO_TH_08DATA (SPI_CFG1_FTHLV_2 | SPI_CFG1_FTHLV_1 | SPI_CFG1_FTHLV_0) #define LL_SPI_FIFO_TH_09DATA (SPI_CFG1_FTHLV_3) #define LL_SPI_FIFO_TH_10DATA (SPI_CFG1_FTHLV_3 | SPI_CFG1_FTHLV_0) #define LL_SPI_FIFO_TH_11DATA (SPI_CFG1_FTHLV_3 | SPI_CFG1_FTHLV_1) #define LL_SPI_FIFO_TH_12DATA (SPI_CFG1_FTHLV_3 | SPI_CFG1_FTHLV_1 | SPI_CFG1_FTHLV_0) #define LL_SPI_FIFO_TH_13DATA (SPI_CFG1_FTHLV_3 | SPI_CFG1_FTHLV_2) #define LL_SPI_FIFO_TH_14DATA (SPI_CFG1_FTHLV_3 | SPI_CFG1_FTHLV_2 | SPI_CFG1_FTHLV_0) #define LL_SPI_FIFO_TH_15DATA (SPI_CFG1_FTHLV_3 | SPI_CFG1_FTHLV_2 | SPI_CFG1_FTHLV_1) #define LL_SPI_FIFO_TH_16DATA (SPI_CFG1_FTHLV_3\ | SPI_CFG1_FTHLV_2 | SPI_CFG1_FTHLV_1 | SPI_CFG1_FTHLV_0) /** * @} */ #if defined(USE_FULL_LL_DRIVER) /** @defgroup SPI_LL_EC_CRC_CALCULATION CRC Calculation * @{ */ #define LL_SPI_CRCCALCULATION_DISABLE (0x00000000UL) /*!< CRC calculation disabled */ #define LL_SPI_CRCCALCULATION_ENABLE (SPI_CFG1_CRCEN) /*!< CRC calculation enabled */ /** * @} */ #endif /* USE_FULL_LL_DRIVER */ /** @defgroup SPI_LL_EC_CRC CRC * @{ */ #define LL_SPI_CRC_4BIT (SPI_CFG1_CRCSIZE_0 | SPI_CFG1_CRCSIZE_1) #define LL_SPI_CRC_5BIT (SPI_CFG1_CRCSIZE_2) #define LL_SPI_CRC_6BIT (SPI_CFG1_CRCSIZE_2 | SPI_CFG1_CRCSIZE_0) #define LL_SPI_CRC_7BIT (SPI_CFG1_CRCSIZE_2 | SPI_CFG1_CRCSIZE_1) #define LL_SPI_CRC_8BIT (SPI_CFG1_CRCSIZE_2 | SPI_CFG1_CRCSIZE_1 | SPI_CFG1_CRCSIZE_0) #define LL_SPI_CRC_9BIT (SPI_CFG1_CRCSIZE_3) #define LL_SPI_CRC_10BIT (SPI_CFG1_CRCSIZE_3 | SPI_CFG1_CRCSIZE_0) #define LL_SPI_CRC_11BIT (SPI_CFG1_CRCSIZE_3 | SPI_CFG1_CRCSIZE_1) #define LL_SPI_CRC_12BIT (SPI_CFG1_CRCSIZE_3 | SPI_CFG1_CRCSIZE_1 | SPI_CFG1_CRCSIZE_0) #define LL_SPI_CRC_13BIT (SPI_CFG1_CRCSIZE_3 | SPI_CFG1_CRCSIZE_2) #define LL_SPI_CRC_14BIT (SPI_CFG1_CRCSIZE_3 | SPI_CFG1_CRCSIZE_2 | SPI_CFG1_CRCSIZE_0) #define LL_SPI_CRC_15BIT (SPI_CFG1_CRCSIZE_3 | SPI_CFG1_CRCSIZE_2 | SPI_CFG1_CRCSIZE_1) #define LL_SPI_CRC_16BIT (SPI_CFG1_CRCSIZE_3\ | SPI_CFG1_CRCSIZE_2 | SPI_CFG1_CRCSIZE_1 | SPI_CFG1_CRCSIZE_0) #define LL_SPI_CRC_17BIT (SPI_CFG1_CRCSIZE_4) #define LL_SPI_CRC_18BIT (SPI_CFG1_CRCSIZE_4 | SPI_CFG1_CRCSIZE_0) #define LL_SPI_CRC_19BIT (SPI_CFG1_CRCSIZE_4 | SPI_CFG1_CRCSIZE_1) #define LL_SPI_CRC_20BIT (SPI_CFG1_CRCSIZE_4 | SPI_CFG1_CRCSIZE_0 | SPI_CFG1_CRCSIZE_1) #define LL_SPI_CRC_21BIT (SPI_CFG1_CRCSIZE_4 | SPI_CFG1_CRCSIZE_2) #define LL_SPI_CRC_22BIT (SPI_CFG1_CRCSIZE_4 | SPI_CFG1_CRCSIZE_2 | SPI_CFG1_CRCSIZE_0) #define LL_SPI_CRC_23BIT (SPI_CFG1_CRCSIZE_4 | SPI_CFG1_CRCSIZE_2 | SPI_CFG1_CRCSIZE_1) #define LL_SPI_CRC_24BIT (SPI_CFG1_CRCSIZE_4\ | SPI_CFG1_CRCSIZE_2 | SPI_CFG1_CRCSIZE_1 | SPI_CFG1_CRCSIZE_0) #define LL_SPI_CRC_25BIT (SPI_CFG1_CRCSIZE_4 | SPI_CFG1_CRCSIZE_3) #define LL_SPI_CRC_26BIT (SPI_CFG1_CRCSIZE_4 | SPI_CFG1_CRCSIZE_3 | SPI_CFG1_CRCSIZE_0) #define LL_SPI_CRC_27BIT (SPI_CFG1_CRCSIZE_4 | SPI_CFG1_CRCSIZE_3 | SPI_CFG1_CRCSIZE_1) #define LL_SPI_CRC_28BIT (SPI_CFG1_CRCSIZE_4\ | SPI_CFG1_CRCSIZE_3 | SPI_CFG1_CRCSIZE_1 | SPI_CFG1_CRCSIZE_0) #define LL_SPI_CRC_29BIT (SPI_CFG1_CRCSIZE_4 | SPI_CFG1_CRCSIZE_3 | SPI_CFG1_CRCSIZE_2) #define LL_SPI_CRC_30BIT (SPI_CFG1_CRCSIZE_4\ | SPI_CFG1_CRCSIZE_3 | SPI_CFG1_CRCSIZE_2 | SPI_CFG1_CRCSIZE_0) #define LL_SPI_CRC_31BIT (SPI_CFG1_CRCSIZE_4\ | SPI_CFG1_CRCSIZE_3 | SPI_CFG1_CRCSIZE_2 | SPI_CFG1_CRCSIZE_1) #define LL_SPI_CRC_32BIT (SPI_CFG1_CRCSIZE_4 | SPI_CFG1_CRCSIZE_3\ | SPI_CFG1_CRCSIZE_2 | SPI_CFG1_CRCSIZE_1 | SPI_CFG1_CRCSIZE_0) /** * @} */ /** @defgroup SPI_LL_EC_NSS_MODE NSS Mode * @{ */ #define LL_SPI_NSS_SOFT (SPI_CFG2_SSM) #define LL_SPI_NSS_HARD_INPUT (0x00000000UL) #define LL_SPI_NSS_HARD_OUTPUT (SPI_CFG2_SSOE) /** * @} */ /** @defgroup SPI_LL_EC_RX_FIFO RxFIFO Packing LeVel * @{ */ #define LL_SPI_RX_FIFO_0PACKET (0x00000000UL) /* 0 or multiple of 4 packet available is the RxFIFO */ #define LL_SPI_RX_FIFO_1PACKET (SPI_SR_RXPLVL_0) #define LL_SPI_RX_FIFO_2PACKET (SPI_SR_RXPLVL_1) #define LL_SPI_RX_FIFO_3PACKET (SPI_SR_RXPLVL_1 | SPI_SR_RXPLVL_0) /** * @} */ /** * @} */ /* Exported macro ------------------------------------------------------------*/ /** @defgroup SPI_LL_Exported_Macros SPI Exported Macros * @{ */ /** @defgroup SPI_LL_EM_WRITE_READ Common Write and read registers Macros * @{ */ /** * @brief Write a value in SPI register * @param __INSTANCE__ SPI Instance * @param __REG__ Register to be written * @param __VALUE__ Value to be written in the register * @retval None */ #define LL_SPI_WriteReg(__INSTANCE__, __REG__, __VALUE__) WRITE_REG(__INSTANCE__->__REG__, (__VALUE__)) /** * @brief Read a value in SPI register * @param __INSTANCE__ SPI Instance * @param __REG__ Register to be read * @retval Register value */ #define LL_SPI_ReadReg(__INSTANCE__, __REG__) READ_REG(__INSTANCE__->__REG__) /** * @} */ /** * @} */ /* Exported functions --------------------------------------------------------*/ /** @defgroup SPI_LL_Exported_Functions SPI Exported Functions * @{ */ /** @defgroup SPI_LL_EF_Configuration Configuration * @{ */ /** * @brief Enable SPI peripheral * @rmtoll CR1 SPE LL_SPI_Enable * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_Enable(SPI_TypeDef *SPIx) { SET_BIT(SPIx->CR1, SPI_CR1_SPE); } /** * @brief Disable SPI peripheral * @note When disabling the SPI, follow the procedure described in the Reference Manual. * @rmtoll CR1 SPE LL_SPI_Disable * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_Disable(SPI_TypeDef *SPIx) { CLEAR_BIT(SPIx->CR1, SPI_CR1_SPE); } /** * @brief Check if SPI peripheral is enabled * @rmtoll CR1 SPE LL_SPI_IsEnabled * @param SPIx SPI Instance * @retval State of bit (1 or 0) */ __STATIC_INLINE uint32_t LL_SPI_IsEnabled(SPI_TypeDef *SPIx) { return ((READ_BIT(SPIx->CR1, SPI_CR1_SPE) == (SPI_CR1_SPE)) ? 1UL : 0UL); } /** * @brief Swap the MOSI and MISO pin * @note This configuration can not be changed when SPI is enabled. * @rmtoll CFG2 IOSWP LL_SPI_EnableIOSwap * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_EnableIOSwap(SPI_TypeDef *SPIx) { SET_BIT(SPIx->CFG2, SPI_CFG2_IOSWP); } /** * @brief Restore default function for MOSI and MISO pin * @note This configuration can not be changed when SPI is enabled. * @rmtoll CFG2 IOSWP LL_SPI_DisableIOSwap * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_DisableIOSwap(SPI_TypeDef *SPIx) { CLEAR_BIT(SPIx->CFG2, SPI_CFG2_IOSWP); } /** * @brief Check if MOSI and MISO pin are swapped * @rmtoll CFG2 IOSWP LL_SPI_IsEnabledIOSwap * @param SPIx SPI Instance * @retval State of bit (1 or 0) */ __STATIC_INLINE uint32_t LL_SPI_IsEnabledIOSwap(SPI_TypeDef *SPIx) { return ((READ_BIT(SPIx->CFG2, SPI_CFG2_IOSWP) == (SPI_CFG2_IOSWP)) ? 1UL : 0UL); } /** * @brief Enable GPIO control * @note This configuration can not be changed when SPI is enabled. * @rmtoll CFG2 AFCNTR LL_SPI_EnableGPIOControl * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_EnableGPIOControl(SPI_TypeDef *SPIx) { SET_BIT(SPIx->CFG2, SPI_CFG2_AFCNTR); } /** * @brief Disable GPIO control * @note This configuration can not be changed when SPI is enabled. * @rmtoll CFG2 AFCNTR LL_SPI_DisableGPIOControl * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_DisableGPIOControl(SPI_TypeDef *SPIx) { CLEAR_BIT(SPIx->CFG2, SPI_CFG2_AFCNTR); } /** * @brief Check if GPIO control is active * @rmtoll CFG2 AFCNTR LL_SPI_IsEnabledGPIOControl * @param SPIx SPI Instance * @retval State of bit (1 or 0) */ __STATIC_INLINE uint32_t LL_SPI_IsEnabledGPIOControl(SPI_TypeDef *SPIx) { return ((READ_BIT(SPIx->CFG2, SPI_CFG2_AFCNTR) == (SPI_CFG2_AFCNTR)) ? 1UL : 0UL); } /** * @brief Set SPI Mode to Master or Slave * @note This configuration can not be changed when SPI is enabled. * @rmtoll CFG2 MASTER LL_SPI_SetMode * @param SPIx SPI Instance * @param Mode This parameter can be one of the following values: * @arg @ref LL_SPI_MODE_MASTER * @arg @ref LL_SPI_MODE_SLAVE * @retval None */ __STATIC_INLINE void LL_SPI_SetMode(SPI_TypeDef *SPIx, uint32_t Mode) { MODIFY_REG(SPIx->CFG2, SPI_CFG2_MASTER, Mode); } /** * @brief Get SPI Mode (Master or Slave) * @rmtoll CFG2 MASTER LL_SPI_GetMode * @param SPIx SPI Instance * @retval Returned value can be one of the following values: * @arg @ref LL_SPI_MODE_MASTER * @arg @ref LL_SPI_MODE_SLAVE */ __STATIC_INLINE uint32_t LL_SPI_GetMode(SPI_TypeDef *SPIx) { return (uint32_t)(READ_BIT(SPIx->CFG2, SPI_CFG2_MASTER)); } /** * @brief Configure the Idleness applied by master between active edge of SS and first send data * @rmtoll CFG2 MSSI LL_SPI_SetMasterSSIdleness * @param SPIx SPI Instance * @param MasterSSIdleness This parameter can be one of the following values: * @arg @ref LL_SPI_SS_IDLENESS_00CYCLE * @arg @ref LL_SPI_SS_IDLENESS_01CYCLE * @arg @ref LL_SPI_SS_IDLENESS_02CYCLE * @arg @ref LL_SPI_SS_IDLENESS_03CYCLE * @arg @ref LL_SPI_SS_IDLENESS_04CYCLE * @arg @ref LL_SPI_SS_IDLENESS_05CYCLE * @arg @ref LL_SPI_SS_IDLENESS_06CYCLE * @arg @ref LL_SPI_SS_IDLENESS_07CYCLE * @arg @ref LL_SPI_SS_IDLENESS_08CYCLE * @arg @ref LL_SPI_SS_IDLENESS_09CYCLE * @arg @ref LL_SPI_SS_IDLENESS_10CYCLE * @arg @ref LL_SPI_SS_IDLENESS_11CYCLE * @arg @ref LL_SPI_SS_IDLENESS_12CYCLE * @arg @ref LL_SPI_SS_IDLENESS_13CYCLE * @arg @ref LL_SPI_SS_IDLENESS_14CYCLE * @arg @ref LL_SPI_SS_IDLENESS_15CYCLE * @retval None */ __STATIC_INLINE void LL_SPI_SetMasterSSIdleness(SPI_TypeDef *SPIx, uint32_t MasterSSIdleness) { MODIFY_REG(SPIx->CFG2, SPI_CFG2_MSSI, MasterSSIdleness); } /** * @brief Get the configured Idleness applied by master * @rmtoll CFG2 MSSI LL_SPI_GetMasterSSIdleness * @param SPIx SPI Instance * @retval Returned value can be one of the following values: * @arg @ref LL_SPI_SS_IDLENESS_00CYCLE * @arg @ref LL_SPI_SS_IDLENESS_01CYCLE * @arg @ref LL_SPI_SS_IDLENESS_02CYCLE * @arg @ref LL_SPI_SS_IDLENESS_03CYCLE * @arg @ref LL_SPI_SS_IDLENESS_04CYCLE * @arg @ref LL_SPI_SS_IDLENESS_05CYCLE * @arg @ref LL_SPI_SS_IDLENESS_06CYCLE * @arg @ref LL_SPI_SS_IDLENESS_07CYCLE * @arg @ref LL_SPI_SS_IDLENESS_08CYCLE * @arg @ref LL_SPI_SS_IDLENESS_09CYCLE * @arg @ref LL_SPI_SS_IDLENESS_10CYCLE * @arg @ref LL_SPI_SS_IDLENESS_11CYCLE * @arg @ref LL_SPI_SS_IDLENESS_12CYCLE * @arg @ref LL_SPI_SS_IDLENESS_13CYCLE * @arg @ref LL_SPI_SS_IDLENESS_14CYCLE * @arg @ref LL_SPI_SS_IDLENESS_15CYCLE */ __STATIC_INLINE uint32_t LL_SPI_GetMasterSSIdleness(SPI_TypeDef *SPIx) { return (uint32_t)(READ_BIT(SPIx->CFG2, SPI_CFG2_MSSI)); } /** * @brief Configure the idleness applied by master between data frame * @rmtoll CFG2 MIDI LL_SPI_SetInterDataIdleness * @param SPIx SPI Instance * @param MasterInterDataIdleness This parameter can be one of the following values: * @arg @ref LL_SPI_ID_IDLENESS_00CYCLE * @arg @ref LL_SPI_ID_IDLENESS_01CYCLE * @arg @ref LL_SPI_ID_IDLENESS_02CYCLE * @arg @ref LL_SPI_ID_IDLENESS_03CYCLE * @arg @ref LL_SPI_ID_IDLENESS_04CYCLE * @arg @ref LL_SPI_ID_IDLENESS_05CYCLE * @arg @ref LL_SPI_ID_IDLENESS_06CYCLE * @arg @ref LL_SPI_ID_IDLENESS_07CYCLE * @arg @ref LL_SPI_ID_IDLENESS_08CYCLE * @arg @ref LL_SPI_ID_IDLENESS_09CYCLE * @arg @ref LL_SPI_ID_IDLENESS_10CYCLE * @arg @ref LL_SPI_ID_IDLENESS_11CYCLE * @arg @ref LL_SPI_ID_IDLENESS_12CYCLE * @arg @ref LL_SPI_ID_IDLENESS_13CYCLE * @arg @ref LL_SPI_ID_IDLENESS_14CYCLE * @arg @ref LL_SPI_ID_IDLENESS_15CYCLE * @retval None */ __STATIC_INLINE void LL_SPI_SetInterDataIdleness(SPI_TypeDef *SPIx, uint32_t MasterInterDataIdleness) { MODIFY_REG(SPIx->CFG2, SPI_CFG2_MIDI, MasterInterDataIdleness); } /** * @brief Get the configured inter data idleness * @rmtoll CFG2 MIDI LL_SPI_SetInterDataIdleness * @param SPIx SPI Instance * @retval Returned value can be one of the following values: * @arg @ref LL_SPI_ID_IDLENESS_00CYCLE * @arg @ref LL_SPI_ID_IDLENESS_01CYCLE * @arg @ref LL_SPI_ID_IDLENESS_02CYCLE * @arg @ref LL_SPI_ID_IDLENESS_03CYCLE * @arg @ref LL_SPI_ID_IDLENESS_04CYCLE * @arg @ref LL_SPI_ID_IDLENESS_05CYCLE * @arg @ref LL_SPI_ID_IDLENESS_06CYCLE * @arg @ref LL_SPI_ID_IDLENESS_07CYCLE * @arg @ref LL_SPI_ID_IDLENESS_08CYCLE * @arg @ref LL_SPI_ID_IDLENESS_09CYCLE * @arg @ref LL_SPI_ID_IDLENESS_10CYCLE * @arg @ref LL_SPI_ID_IDLENESS_11CYCLE * @arg @ref LL_SPI_ID_IDLENESS_12CYCLE * @arg @ref LL_SPI_ID_IDLENESS_13CYCLE * @arg @ref LL_SPI_ID_IDLENESS_14CYCLE * @arg @ref LL_SPI_ID_IDLENESS_15CYCLE */ __STATIC_INLINE uint32_t LL_SPI_GetInterDataIdleness(SPI_TypeDef *SPIx) { return (uint32_t)(READ_BIT(SPIx->CFG2, SPI_CFG2_MIDI)); } /** * @brief Set transfer size * @note Count is the number of frame to be transferred * @rmtoll CR2 TSIZE LL_SPI_SetTransferSize * @param SPIx SPI Instance * @param Count 0..0xFFFF * @retval None */ __STATIC_INLINE void LL_SPI_SetTransferSize(SPI_TypeDef *SPIx, uint32_t Count) { MODIFY_REG(SPIx->CR2, SPI_CR2_TSIZE, Count); } /** * @brief Get transfer size * @note Count is the number of frame to be transferred * @rmtoll CR2 TSIZE LL_SPI_GetTransferSize * @param SPIx SPI Instance * @retval 0..0xFFFF */ __STATIC_INLINE uint32_t LL_SPI_GetTransferSize(SPI_TypeDef *SPIx) { return (uint32_t)(READ_BIT(SPIx->CR2, SPI_CR2_TSIZE)); } /** * @brief Set reload transfer size * @note Count is the number of frame to be transferred * @rmtoll CR2 TSER LL_SPI_SetReloadSize * @param SPIx SPI Instance * @param Count 0..0xFFFF * @retval None */ __STATIC_INLINE void LL_SPI_SetReloadSize(SPI_TypeDef *SPIx, uint32_t Count) { MODIFY_REG(SPIx->CR2, SPI_CR2_TSER, Count << SPI_CR2_TSER_Pos); } /** * @brief Get reload transfer size * @note Count is the number of frame to be transferred * @rmtoll CR2 TSER LL_SPI_GetReloadSize * @param SPIx SPI Instance * @retval 0..0xFFFF */ __STATIC_INLINE uint32_t LL_SPI_GetReloadSize(SPI_TypeDef *SPIx) { return (uint32_t)(READ_BIT(SPIx->CR2, SPI_CR2_TSER) >> SPI_CR2_TSER_Pos); } /** * @brief Lock the AF configuration of associated IOs * @note Once this bit is set, the AF configuration remains locked until a hardware reset occurs. * the reset of the IOLock bit is done by hardware. for that, LL_SPI_DisableIOLock can not exist. * @rmtoll CR1 IOLOCK LL_SPI_EnableIOLock * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_EnableIOLock(SPI_TypeDef *SPIx) { SET_BIT(SPIx->CR1, SPI_CR1_IOLOCK); } /** * @brief Check if the AF configuration is locked. * @rmtoll CR1 IOLOCK LL_SPI_IsEnabledIOLock * @param SPIx SPI Instance * @retval State of bit (1 or 0) */ __STATIC_INLINE uint32_t LL_SPI_IsEnabledIOLock(SPI_TypeDef *SPIx) { return ((READ_BIT(SPIx->CR1, SPI_CR1_IOLOCK) == (SPI_CR1_IOLOCK)) ? 1UL : 0UL); } /** * @brief Set Tx CRC Initialization Pattern * @rmtoll CR1 TCRCINI LL_SPI_SetTxCRCInitPattern * @param SPIx SPI Instance * @param TXCRCInitAll This parameter can be one of the following values: * @arg @ref LL_SPI_TXCRCINIT_ALL_ZERO_PATTERN * @arg @ref LL_SPI_TXCRCINIT_ALL_ONES_PATTERN * @retval None */ __STATIC_INLINE void LL_SPI_SetTxCRCInitPattern(SPI_TypeDef *SPIx, uint32_t TXCRCInitAll) { MODIFY_REG(SPIx->CR1, SPI_CR1_RCRCINI, TXCRCInitAll); } /** * @brief Get Tx CRC Initialization Pattern * @rmtoll CR1 TCRCINI LL_SPI_GetTxCRCInitPattern * @param SPIx SPI Instance * @retval Returned value can be one of the following values: * @arg @ref LL_SPI_TXCRCINIT_ALL_ZERO_PATTERN * @arg @ref LL_SPI_TXCRCINIT_ALL_ONES_PATTERN */ __STATIC_INLINE uint32_t LL_SPI_GetTxCRCInitPattern(SPI_TypeDef *SPIx) { return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_TCRCINI)); } /** * @brief Set Rx CRC Initialization Pattern * @rmtoll CR1 RCRCINI LL_SPI_SetRxCRCInitPattern * @param SPIx SPI Instance * @param RXCRCInitAll This parameter can be one of the following values: * @arg @ref LL_SPI_RXCRCINIT_ALL_ZERO_PATTERN * @arg @ref LL_SPI_RXCRCINIT_ALL_ONES_PATTERN * @retval None */ __STATIC_INLINE void LL_SPI_SetRxCRCInitPattern(SPI_TypeDef *SPIx, uint32_t RXCRCInitAll) { MODIFY_REG(SPIx->CR1, SPI_CR1_RCRCINI, RXCRCInitAll); } /** * @brief Get Rx CRC Initialization Pattern * @rmtoll CR1 RCRCINI LL_SPI_GetRxCRCInitPattern * @param SPIx SPI Instance * @retval Returned value can be one of the following values: * @arg @ref LL_SPI_RXCRCINIT_ALL_ZERO_PATTERN * @arg @ref LL_SPI_RXCRCINIT_ALL_ONES_PATTERN */ __STATIC_INLINE uint32_t LL_SPI_GetRxCRCInitPattern(SPI_TypeDef *SPIx) { return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_RCRCINI)); } /** * @brief Set internal SS input level ignoring what comes from PIN. * @note This configuration has effect only with config LL_SPI_NSS_SOFT * @rmtoll CR1 SSI LL_SPI_SetInternalSSLevel * @param SPIx SPI Instance * @param SSLevel This parameter can be one of the following values: * @arg @ref LL_SPI_SS_LEVEL_HIGH * @arg @ref LL_SPI_SS_LEVEL_LOW * @retval None */ __STATIC_INLINE void LL_SPI_SetInternalSSLevel(SPI_TypeDef *SPIx, uint32_t SSLevel) { MODIFY_REG(SPIx->CR1, SPI_CR1_SSI, SSLevel); } /** * @brief Get internal SS input level * @rmtoll CR1 SSI LL_SPI_GetInternalSSLevel * @param SPIx SPI Instance * @retval Returned value can be one of the following values: * @arg @ref LL_SPI_SS_LEVEL_HIGH * @arg @ref LL_SPI_SS_LEVEL_LOW */ __STATIC_INLINE uint32_t LL_SPI_GetInternalSSLevel(SPI_TypeDef *SPIx) { return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_SSI)); } /** * @brief Enable CRC computation on 33/17 bits * @rmtoll CR1 CRC33_17 LL_SPI_EnableFullSizeCRC * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_EnableFullSizeCRC(SPI_TypeDef *SPIx) { SET_BIT(SPIx->CR1, SPI_CR1_CRC33_17); } /** * @brief Disable CRC computation on 33/17 bits * @rmtoll CR1 CRC33_17 LL_SPI_DisableFullSizeCRC * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_DisableFullSizeCRC(SPI_TypeDef *SPIx) { CLEAR_BIT(SPIx->CR1, SPI_CR1_CRC33_17); } /** * @brief Check if Enable CRC computation on 33/17 bits is enabled * @rmtoll CR1 CRC33_17 LL_SPI_IsEnabledFullSizeCRC * @param SPIx SPI Instance * @retval State of bit (1 or 0) */ __STATIC_INLINE uint32_t LL_SPI_IsEnabledFullSizeCRC(SPI_TypeDef *SPIx) { return ((READ_BIT(SPIx->CR1, SPI_CR1_CRC33_17) == (SPI_CR1_CRC33_17)) ? 1UL : 0UL); } /** * @brief Suspend an ongoing transfer for Master configuration * @rmtoll CR1 CSUSP LL_SPI_SuspendMasterTransfer * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_SuspendMasterTransfer(SPI_TypeDef *SPIx) { SET_BIT(SPIx->CR1, SPI_CR1_CSUSP); } /** * @brief Start effective transfer on wire for Master configuration * @rmtoll CR1 CSTART LL_SPI_StartMasterTransfer * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_StartMasterTransfer(SPI_TypeDef *SPIx) { SET_BIT(SPIx->CR1, SPI_CR1_CSTART); } /** * @brief Check if there is an unfinished master transfer * @rmtoll CR1 CSTART LL_SPI_IsActiveMasterTransfer * @param SPIx SPI Instance * @retval State of bit (1 or 0) */ __STATIC_INLINE uint32_t LL_SPI_IsActiveMasterTransfer(SPI_TypeDef *SPIx) { return ((READ_BIT(SPIx->CR1, SPI_CR1_CSTART) == (SPI_CR1_CSTART)) ? 1UL : 0UL); } /** * @brief Enable Master Rx auto suspend in case of overrun * @rmtoll CR1 MASRX LL_SPI_EnableMasterRxAutoSuspend * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_EnableMasterRxAutoSuspend(SPI_TypeDef *SPIx) { SET_BIT(SPIx->CR1, SPI_CR1_MASRX); } /** * @brief Disable Master Rx auto suspend in case of overrun * @rmtoll CR1 MASRX LL_SPI_DisableMasterRxAutoSuspend * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_DisableMasterRxAutoSuspend(SPI_TypeDef *SPIx) { CLEAR_BIT(SPIx->CR1, SPI_CR1_MASRX); } /** * @brief Check if Master Rx auto suspend is activated * @rmtoll CR1 MASRX LL_SPI_IsEnabledMasterRxAutoSuspend * @param SPIx SPI Instance * @retval State of bit (1 or 0) */ __STATIC_INLINE uint32_t LL_SPI_IsEnabledMasterRxAutoSuspend(SPI_TypeDef *SPIx) { return ((READ_BIT(SPIx->CR1, SPI_CR1_MASRX) == (SPI_CR1_MASRX)) ? 1UL : 0UL); } /** * @brief Set Underrun behavior * @note This configuration can not be changed when SPI is enabled. * @rmtoll CFG1 UDRCFG LL_SPI_SetUDRConfiguration * @param SPIx SPI Instance * @param UDRConfig This parameter can be one of the following values: * @arg @ref LL_SPI_UDR_CONFIG_REGISTER_PATTERN * @arg @ref LL_SPI_UDR_CONFIG_LAST_RECEIVED * @arg @ref LL_SPI_UDR_CONFIG_LAST_TRANSMITTED * @retval None */ __STATIC_INLINE void LL_SPI_SetUDRConfiguration(SPI_TypeDef *SPIx, uint32_t UDRConfig) { MODIFY_REG(SPIx->CFG1, SPI_CFG1_UDRCFG, UDRConfig); } /** * @brief Get Underrun behavior * @rmtoll CFG1 UDRCFG LL_SPI_GetUDRConfiguration * @param SPIx SPI Instance * @retval Returned value can be one of the following values: * @arg @ref LL_SPI_UDR_CONFIG_REGISTER_PATTERN * @arg @ref LL_SPI_UDR_CONFIG_LAST_RECEIVED * @arg @ref LL_SPI_UDR_CONFIG_LAST_TRANSMITTED */ __STATIC_INLINE uint32_t LL_SPI_GetUDRConfiguration(SPI_TypeDef *SPIx) { return (uint32_t)(READ_BIT(SPIx->CFG1, SPI_CFG1_UDRCFG)); } /** * @brief Set Underrun Detection method * @note This configuration can not be changed when SPI is enabled. * @rmtoll CFG1 UDRDET LL_SPI_SetUDRDetection * @param SPIx SPI Instance * @param UDRDetection This parameter can be one of the following values: * @arg @ref LL_SPI_UDR_DETECT_BEGIN_DATA_FRAME * @arg @ref LL_SPI_UDR_DETECT_END_DATA_FRAME * @arg @ref LL_SPI_UDR_DETECT_BEGIN_ACTIVE_NSS * @retval None */ __STATIC_INLINE void LL_SPI_SetUDRDetection(SPI_TypeDef *SPIx, uint32_t UDRDetection) { MODIFY_REG(SPIx->CFG1, SPI_CFG1_UDRDET, UDRDetection); } /** * @brief Get Underrun Detection method * @rmtoll CFG1 UDRDET LL_SPI_GetUDRDetection * @param SPIx SPI Instance * @retval Returned value can be one of the following values: * @arg @ref LL_SPI_UDR_DETECT_BEGIN_DATA_FRAME * @arg @ref LL_SPI_UDR_DETECT_END_DATA_FRAME * @arg @ref LL_SPI_UDR_DETECT_BEGIN_ACTIVE_NSS */ __STATIC_INLINE uint32_t LL_SPI_GetUDRDetection(SPI_TypeDef *SPIx) { return (uint32_t)(READ_BIT(SPIx->CFG1, SPI_CFG1_UDRDET)); } /** * @brief Set Serial protocol used * @note This configuration can not be changed when SPI is enabled. * @rmtoll CFG2 SP LL_SPI_SetStandard * @param SPIx SPI Instance * @param Standard This parameter can be one of the following values: * @arg @ref LL_SPI_PROTOCOL_MOTOROLA * @arg @ref LL_SPI_PROTOCOL_TI * @retval None */ __STATIC_INLINE void LL_SPI_SetStandard(SPI_TypeDef *SPIx, uint32_t Standard) { MODIFY_REG(SPIx->CFG2, SPI_CFG2_SP, Standard); } /** * @brief Get Serial protocol used * @rmtoll CFG2 SP LL_SPI_GetStandard * @param SPIx SPI Instance * @retval Returned value can be one of the following values: * @arg @ref LL_SPI_PROTOCOL_MOTOROLA * @arg @ref LL_SPI_PROTOCOL_TI */ __STATIC_INLINE uint32_t LL_SPI_GetStandard(SPI_TypeDef *SPIx) { return (uint32_t)(READ_BIT(SPIx->CFG2, SPI_CFG2_SP)); } /** * @brief Set Clock phase * @note This configuration can not be changed when SPI is enabled. * This bit is not used in SPI TI mode. * @rmtoll CFG2 CPHA LL_SPI_SetClockPhase * @param SPIx SPI Instance * @param ClockPhase This parameter can be one of the following values: * @arg @ref LL_SPI_PHASE_1EDGE * @arg @ref LL_SPI_PHASE_2EDGE * @retval None */ __STATIC_INLINE void LL_SPI_SetClockPhase(SPI_TypeDef *SPIx, uint32_t ClockPhase) { MODIFY_REG(SPIx->CFG2, SPI_CFG2_CPHA, ClockPhase); } /** * @brief Get Clock phase * @rmtoll CFG2 CPHA LL_SPI_GetClockPhase * @param SPIx SPI Instance * @retval Returned value can be one of the following values: * @arg @ref LL_SPI_PHASE_1EDGE * @arg @ref LL_SPI_PHASE_2EDGE */ __STATIC_INLINE uint32_t LL_SPI_GetClockPhase(SPI_TypeDef *SPIx) { return (uint32_t)(READ_BIT(SPIx->CFG2, SPI_CFG2_CPHA)); } /** * @brief Set Clock polarity * @note This configuration can not be changed when SPI is enabled. * This bit is not used in SPI TI mode. * @rmtoll CFG2 CPOL LL_SPI_SetClockPolarity * @param SPIx SPI Instance * @param ClockPolarity This parameter can be one of the following values: * @arg @ref LL_SPI_POLARITY_LOW * @arg @ref LL_SPI_POLARITY_HIGH * @retval None */ __STATIC_INLINE void LL_SPI_SetClockPolarity(SPI_TypeDef *SPIx, uint32_t ClockPolarity) { MODIFY_REG(SPIx->CFG2, SPI_CFG2_CPOL, ClockPolarity); } /** * @brief Get Clock polarity * @rmtoll CFG2 CPOL LL_SPI_GetClockPolarity * @param SPIx SPI Instance * @retval Returned value can be one of the following values: * @arg @ref LL_SPI_POLARITY_LOW * @arg @ref LL_SPI_POLARITY_HIGH */ __STATIC_INLINE uint32_t LL_SPI_GetClockPolarity(SPI_TypeDef *SPIx) { return (uint32_t)(READ_BIT(SPIx->CFG2, SPI_CFG2_CPOL)); } /** * @brief Set NSS polarity * @note This configuration can not be changed when SPI is enabled. * This bit is not used in SPI TI mode. * @rmtoll CFG2 SSIOP LL_SPI_SetNSSPolarity * @param SPIx SPI Instance * @param NSSPolarity This parameter can be one of the following values: * @arg @ref LL_SPI_NSS_POLARITY_LOW * @arg @ref LL_SPI_NSS_POLARITY_HIGH * @retval None */ __STATIC_INLINE void LL_SPI_SetNSSPolarity(SPI_TypeDef *SPIx, uint32_t NSSPolarity) { MODIFY_REG(SPIx->CFG2, SPI_CFG2_SSIOP, NSSPolarity); } /** * @brief Get NSS polarity * @rmtoll CFG2 SSIOP LL_SPI_GetNSSPolarity * @param SPIx SPI Instance * @retval Returned value can be one of the following values: * @arg @ref LL_SPI_NSS_POLARITY_LOW * @arg @ref LL_SPI_NSS_POLARITY_HIGH */ __STATIC_INLINE uint32_t LL_SPI_GetNSSPolarity(SPI_TypeDef *SPIx) { return (uint32_t)(READ_BIT(SPIx->CFG2, SPI_CFG2_SSIOP)); } /** * @brief Set Baudrate Prescaler * @note This configuration can not be changed when SPI is enabled. * SPI BaudRate = fPCLK/Pescaler. * @rmtoll CFG1 MBR LL_SPI_SetBaudRatePrescaler * @param SPIx SPI Instance * @param Baudrate This parameter can be one of the following values: * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV2 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV4 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV8 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV16 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV32 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV64 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV128 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV256 * @retval None */ __STATIC_INLINE void LL_SPI_SetBaudRatePrescaler(SPI_TypeDef *SPIx, uint32_t Baudrate) { MODIFY_REG(SPIx->CFG1, SPI_CFG1_MBR, Baudrate); } /** * @brief Get Baudrate Prescaler * @rmtoll CFG1 MBR LL_SPI_GetBaudRatePrescaler * @param SPIx SPI Instance * @retval Returned value can be one of the following values: * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV2 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV4 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV8 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV16 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV32 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV64 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV128 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV256 */ __STATIC_INLINE uint32_t LL_SPI_GetBaudRatePrescaler(SPI_TypeDef *SPIx) { return (uint32_t)(READ_BIT(SPIx->CFG1, SPI_CFG1_MBR)); } /** * @brief Set Transfer Bit Order * @note This configuration can not be changed when SPI is enabled. * This bit is not used in SPI TI mode. * @rmtoll CFG2 LSBFRST LL_SPI_SetTransferBitOrder * @param SPIx SPI Instance * @param BitOrder This parameter can be one of the following values: * @arg @ref LL_SPI_LSB_FIRST * @arg @ref LL_SPI_MSB_FIRST * @retval None */ __STATIC_INLINE void LL_SPI_SetTransferBitOrder(SPI_TypeDef *SPIx, uint32_t BitOrder) { MODIFY_REG(SPIx->CFG2, SPI_CFG2_LSBFRST, BitOrder); } /** * @brief Get Transfer Bit Order * @rmtoll CFG2 LSBFRST LL_SPI_GetTransferBitOrder * @param SPIx SPI Instance * @retval Returned value can be one of the following values: * @arg @ref LL_SPI_LSB_FIRST * @arg @ref LL_SPI_MSB_FIRST */ __STATIC_INLINE uint32_t LL_SPI_GetTransferBitOrder(SPI_TypeDef *SPIx) { return (uint32_t)(READ_BIT(SPIx->CFG2, SPI_CFG2_LSBFRST)); } /** * @brief Set Transfer Mode * @note This configuration can not be changed when SPI is enabled except for half duplex direction * using LL_SPI_SetHalfDuplexDirection. * @rmtoll CR1 HDDIR LL_SPI_SetTransferDirection\n * CFG2 COMM LL_SPI_SetTransferDirection * @param SPIx SPI Instance * @param TransferDirection This parameter can be one of the following values: * @arg @ref LL_SPI_FULL_DUPLEX * @arg @ref LL_SPI_SIMPLEX_TX * @arg @ref LL_SPI_SIMPLEX_RX * @arg @ref LL_SPI_HALF_DUPLEX_RX * @arg @ref LL_SPI_HALF_DUPLEX_TX * @retval None */ __STATIC_INLINE void LL_SPI_SetTransferDirection(SPI_TypeDef *SPIx, uint32_t TransferDirection) { MODIFY_REG(SPIx->CR1, SPI_CR1_HDDIR, TransferDirection & SPI_CR1_HDDIR); MODIFY_REG(SPIx->CFG2, SPI_CFG2_COMM, TransferDirection & SPI_CFG2_COMM); } /** * @brief Get Transfer Mode * @rmtoll CR1 HDDIR LL_SPI_GetTransferDirection\n * CFG2 COMM LL_SPI_GetTransferDirection * @param SPIx SPI Instance * @retval Returned value can be one of the following values: * @arg @ref LL_SPI_FULL_DUPLEX * @arg @ref LL_SPI_SIMPLEX_TX * @arg @ref LL_SPI_SIMPLEX_RX * @arg @ref LL_SPI_HALF_DUPLEX_RX * @arg @ref LL_SPI_HALF_DUPLEX_TX */ __STATIC_INLINE uint32_t LL_SPI_GetTransferDirection(SPI_TypeDef *SPIx) { uint32_t Hddir = READ_BIT(SPIx->CR1, SPI_CR1_HDDIR); uint32_t Comm = READ_BIT(SPIx->CFG2, SPI_CFG2_COMM); return (Hddir | Comm); } /** * @brief Set direction for Half-Duplex Mode * @note In master mode the MOSI pin is used and in slave mode the MISO pin is used for Half-Duplex. * @rmtoll CR1 HDDIR LL_SPI_SetHalfDuplexDirection * @param SPIx SPI Instance * @param HalfDuplexDirection This parameter can be one of the following values: * @arg @ref LL_SPI_HALF_DUPLEX_RX * @arg @ref LL_SPI_HALF_DUPLEX_TX * @retval None */ __STATIC_INLINE void LL_SPI_SetHalfDuplexDirection(SPI_TypeDef *SPIx, uint32_t HalfDuplexDirection) { MODIFY_REG(SPIx->CR1, SPI_CR1_HDDIR, HalfDuplexDirection & SPI_CR1_HDDIR); } /** * @brief Get direction for Half-Duplex Mode * @note In master mode the MOSI pin is used and in slave mode the MISO pin is used for Half-Duplex. * @rmtoll CR1 HDDIR LL_SPI_GetHalfDuplexDirection * @param SPIx SPI Instance * @retval Returned value can be one of the following values: * @arg @ref LL_SPI_HALF_DUPLEX_RX * @arg @ref LL_SPI_HALF_DUPLEX_TX */ __STATIC_INLINE uint32_t LL_SPI_GetHalfDuplexDirection(SPI_TypeDef *SPIx) { return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_HDDIR) | SPI_CFG2_COMM); } /** * @brief Set Frame Data Size * @note This configuration can not be changed when SPI is enabled. * @rmtoll CFG1 DSIZE LL_SPI_SetDataWidth * @param SPIx SPI Instance * @param DataWidth This parameter can be one of the following values: * @arg @ref LL_SPI_DATAWIDTH_4BIT * @arg @ref LL_SPI_DATAWIDTH_5BIT * @arg @ref LL_SPI_DATAWIDTH_6BIT * @arg @ref LL_SPI_DATAWIDTH_7BIT * @arg @ref LL_SPI_DATAWIDTH_8BIT * @arg @ref LL_SPI_DATAWIDTH_9BIT * @arg @ref LL_SPI_DATAWIDTH_10BIT * @arg @ref LL_SPI_DATAWIDTH_11BIT * @arg @ref LL_SPI_DATAWIDTH_12BIT * @arg @ref LL_SPI_DATAWIDTH_13BIT * @arg @ref LL_SPI_DATAWIDTH_14BIT * @arg @ref LL_SPI_DATAWIDTH_15BIT * @arg @ref LL_SPI_DATAWIDTH_16BIT * @arg @ref LL_SPI_DATAWIDTH_17BIT * @arg @ref LL_SPI_DATAWIDTH_18BIT * @arg @ref LL_SPI_DATAWIDTH_19BIT * @arg @ref LL_SPI_DATAWIDTH_20BIT * @arg @ref LL_SPI_DATAWIDTH_21BIT * @arg @ref LL_SPI_DATAWIDTH_22BIT * @arg @ref LL_SPI_DATAWIDTH_23BIT * @arg @ref LL_SPI_DATAWIDTH_24BIT * @arg @ref LL_SPI_DATAWIDTH_25BIT * @arg @ref LL_SPI_DATAWIDTH_26BIT * @arg @ref LL_SPI_DATAWIDTH_27BIT * @arg @ref LL_SPI_DATAWIDTH_28BIT * @arg @ref LL_SPI_DATAWIDTH_29BIT * @arg @ref LL_SPI_DATAWIDTH_30BIT * @arg @ref LL_SPI_DATAWIDTH_31BIT * @arg @ref LL_SPI_DATAWIDTH_32BIT * @retval None */ __STATIC_INLINE void LL_SPI_SetDataWidth(SPI_TypeDef *SPIx, uint32_t DataWidth) { MODIFY_REG(SPIx->CFG1, SPI_CFG1_DSIZE, DataWidth); } /** * @brief Get Frame Data Size * @rmtoll CFG1 DSIZE LL_SPI_GetDataWidth * @param SPIx SPI Instance * @retval Returned value can be one of the following values: * @arg @ref LL_SPI_DATAWIDTH_4BIT * @arg @ref LL_SPI_DATAWIDTH_5BIT * @arg @ref LL_SPI_DATAWIDTH_6BIT * @arg @ref LL_SPI_DATAWIDTH_7BIT * @arg @ref LL_SPI_DATAWIDTH_8BIT * @arg @ref LL_SPI_DATAWIDTH_9BIT * @arg @ref LL_SPI_DATAWIDTH_10BIT * @arg @ref LL_SPI_DATAWIDTH_11BIT * @arg @ref LL_SPI_DATAWIDTH_12BIT * @arg @ref LL_SPI_DATAWIDTH_13BIT * @arg @ref LL_SPI_DATAWIDTH_14BIT * @arg @ref LL_SPI_DATAWIDTH_15BIT * @arg @ref LL_SPI_DATAWIDTH_16BIT * @arg @ref LL_SPI_DATAWIDTH_17BIT * @arg @ref LL_SPI_DATAWIDTH_18BIT * @arg @ref LL_SPI_DATAWIDTH_19BIT * @arg @ref LL_SPI_DATAWIDTH_20BIT * @arg @ref LL_SPI_DATAWIDTH_21BIT * @arg @ref LL_SPI_DATAWIDTH_22BIT * @arg @ref LL_SPI_DATAWIDTH_23BIT * @arg @ref LL_SPI_DATAWIDTH_24BIT * @arg @ref LL_SPI_DATAWIDTH_25BIT * @arg @ref LL_SPI_DATAWIDTH_26BIT * @arg @ref LL_SPI_DATAWIDTH_27BIT * @arg @ref LL_SPI_DATAWIDTH_28BIT * @arg @ref LL_SPI_DATAWIDTH_29BIT * @arg @ref LL_SPI_DATAWIDTH_30BIT * @arg @ref LL_SPI_DATAWIDTH_31BIT * @arg @ref LL_SPI_DATAWIDTH_32BIT */ __STATIC_INLINE uint32_t LL_SPI_GetDataWidth(SPI_TypeDef *SPIx) { return (uint32_t)(READ_BIT(SPIx->CFG1, SPI_CFG1_DSIZE)); } /** * @brief Set threshold of FIFO that triggers a transfer event * @note This configuration can not be changed when SPI is enabled. * @rmtoll CFG1 FTHLV LL_SPI_SetFIFOThreshold * @param SPIx SPI Instance * @param Threshold This parameter can be one of the following values: * @arg @ref LL_SPI_FIFO_TH_01DATA * @arg @ref LL_SPI_FIFO_TH_02DATA * @arg @ref LL_SPI_FIFO_TH_03DATA * @arg @ref LL_SPI_FIFO_TH_04DATA * @arg @ref LL_SPI_FIFO_TH_05DATA * @arg @ref LL_SPI_FIFO_TH_06DATA * @arg @ref LL_SPI_FIFO_TH_07DATA * @arg @ref LL_SPI_FIFO_TH_08DATA * @arg @ref LL_SPI_FIFO_TH_09DATA * @arg @ref LL_SPI_FIFO_TH_10DATA * @arg @ref LL_SPI_FIFO_TH_11DATA * @arg @ref LL_SPI_FIFO_TH_12DATA * @arg @ref LL_SPI_FIFO_TH_13DATA * @arg @ref LL_SPI_FIFO_TH_14DATA * @arg @ref LL_SPI_FIFO_TH_15DATA * @arg @ref LL_SPI_FIFO_TH_16DATA * @retval None */ __STATIC_INLINE void LL_SPI_SetFIFOThreshold(SPI_TypeDef *SPIx, uint32_t Threshold) { MODIFY_REG(SPIx->CFG1, SPI_CFG1_FTHLV, Threshold); } /** * @brief Get threshold of FIFO that triggers a transfer event * @rmtoll CFG1 FTHLV LL_SPI_GetFIFOThreshold * @param SPIx SPI Instance * @retval Returned value can be one of the following values: * @arg @ref LL_SPI_FIFO_TH_01DATA * @arg @ref LL_SPI_FIFO_TH_02DATA * @arg @ref LL_SPI_FIFO_TH_03DATA * @arg @ref LL_SPI_FIFO_TH_04DATA * @arg @ref LL_SPI_FIFO_TH_05DATA * @arg @ref LL_SPI_FIFO_TH_06DATA * @arg @ref LL_SPI_FIFO_TH_07DATA * @arg @ref LL_SPI_FIFO_TH_08DATA * @arg @ref LL_SPI_FIFO_TH_09DATA * @arg @ref LL_SPI_FIFO_TH_10DATA * @arg @ref LL_SPI_FIFO_TH_11DATA * @arg @ref LL_SPI_FIFO_TH_12DATA * @arg @ref LL_SPI_FIFO_TH_13DATA * @arg @ref LL_SPI_FIFO_TH_14DATA * @arg @ref LL_SPI_FIFO_TH_15DATA * @arg @ref LL_SPI_FIFO_TH_16DATA */ __STATIC_INLINE uint32_t LL_SPI_GetFIFOThreshold(SPI_TypeDef *SPIx) { return (uint32_t)(READ_BIT(SPIx->CFG1, SPI_CFG1_FTHLV)); } /** * @brief Enable CRC * @note This configuration can not be changed when SPI is enabled. * @rmtoll CFG1 CRCEN LL_SPI_EnableCRC * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_EnableCRC(SPI_TypeDef *SPIx) { SET_BIT(SPIx->CFG1, SPI_CFG1_CRCEN); } /** * @brief Disable CRC * @rmtoll CFG1 CRCEN LL_SPI_DisableCRC * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_DisableCRC(SPI_TypeDef *SPIx) { CLEAR_BIT(SPIx->CFG1, SPI_CFG1_CRCEN); } /** * @brief Check if CRC is enabled * @rmtoll CFG1 CRCEN LL_SPI_IsEnabledCRC * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_SPI_IsEnabledCRC(SPI_TypeDef *SPIx) { return ((READ_BIT(SPIx->CFG1, SPI_CFG1_CRCEN) == SPI_CFG1_CRCEN) ? 1UL : 0UL); } /** * @brief Set CRC Length * @note This configuration can not be changed when SPI is enabled. * @rmtoll CFG1 CRCSIZE LL_SPI_SetCRCWidth * @param SPIx SPI Instance * @param CRCLength This parameter can be one of the following values: * @arg @ref LL_SPI_CRC_4BIT * @arg @ref LL_SPI_CRC_5BIT * @arg @ref LL_SPI_CRC_6BIT * @arg @ref LL_SPI_CRC_7BIT * @arg @ref LL_SPI_CRC_8BIT * @arg @ref LL_SPI_CRC_9BIT * @arg @ref LL_SPI_CRC_10BIT * @arg @ref LL_SPI_CRC_11BIT * @arg @ref LL_SPI_CRC_12BIT * @arg @ref LL_SPI_CRC_13BIT * @arg @ref LL_SPI_CRC_14BIT * @arg @ref LL_SPI_CRC_15BIT * @arg @ref LL_SPI_CRC_16BIT * @arg @ref LL_SPI_CRC_17BIT * @arg @ref LL_SPI_CRC_18BIT * @arg @ref LL_SPI_CRC_19BIT * @arg @ref LL_SPI_CRC_20BIT * @arg @ref LL_SPI_CRC_21BIT * @arg @ref LL_SPI_CRC_22BIT * @arg @ref LL_SPI_CRC_23BIT * @arg @ref LL_SPI_CRC_24BIT * @arg @ref LL_SPI_CRC_25BIT * @arg @ref LL_SPI_CRC_26BIT * @arg @ref LL_SPI_CRC_27BIT * @arg @ref LL_SPI_CRC_28BIT * @arg @ref LL_SPI_CRC_29BIT * @arg @ref LL_SPI_CRC_30BIT * @arg @ref LL_SPI_CRC_31BIT * @arg @ref LL_SPI_CRC_32BIT * @retval None */ __STATIC_INLINE void LL_SPI_SetCRCWidth(SPI_TypeDef *SPIx, uint32_t CRCLength) { MODIFY_REG(SPIx->CFG1, SPI_CFG1_CRCSIZE, CRCLength); } /** * @brief Get CRC Length * @rmtoll CFG1 CRCSIZE LL_SPI_GetCRCWidth * @param SPIx SPI Instance * @retval Returned value can be one of the following values: * @arg @ref LL_SPI_CRC_4BIT * @arg @ref LL_SPI_CRC_5BIT * @arg @ref LL_SPI_CRC_6BIT * @arg @ref LL_SPI_CRC_7BIT * @arg @ref LL_SPI_CRC_8BIT * @arg @ref LL_SPI_CRC_9BIT * @arg @ref LL_SPI_CRC_10BIT * @arg @ref LL_SPI_CRC_11BIT * @arg @ref LL_SPI_CRC_12BIT * @arg @ref LL_SPI_CRC_13BIT * @arg @ref LL_SPI_CRC_14BIT * @arg @ref LL_SPI_CRC_15BIT * @arg @ref LL_SPI_CRC_16BIT * @arg @ref LL_SPI_CRC_17BIT * @arg @ref LL_SPI_CRC_18BIT * @arg @ref LL_SPI_CRC_19BIT * @arg @ref LL_SPI_CRC_20BIT * @arg @ref LL_SPI_CRC_21BIT * @arg @ref LL_SPI_CRC_22BIT * @arg @ref LL_SPI_CRC_23BIT * @arg @ref LL_SPI_CRC_24BIT * @arg @ref LL_SPI_CRC_25BIT * @arg @ref LL_SPI_CRC_26BIT * @arg @ref LL_SPI_CRC_27BIT * @arg @ref LL_SPI_CRC_28BIT * @arg @ref LL_SPI_CRC_29BIT * @arg @ref LL_SPI_CRC_30BIT * @arg @ref LL_SPI_CRC_31BIT * @arg @ref LL_SPI_CRC_32BIT */ __STATIC_INLINE uint32_t LL_SPI_GetCRCWidth(SPI_TypeDef *SPIx) { return (uint32_t)(READ_BIT(SPIx->CFG1, SPI_CFG1_CRCSIZE)); } /** * @brief Set NSS Mode * @note This configuration can not be changed when SPI is enabled. * This bit is not used in SPI TI mode. * @rmtoll CFG2 SSM LL_SPI_SetNSSMode\n * CFG2 SSOE LL_SPI_SetNSSMode * @param SPIx SPI Instance * @param NSS This parameter can be one of the following values: * @arg @ref LL_SPI_NSS_SOFT * @arg @ref LL_SPI_NSS_HARD_INPUT * @arg @ref LL_SPI_NSS_HARD_OUTPUT * @retval None */ __STATIC_INLINE void LL_SPI_SetNSSMode(SPI_TypeDef *SPIx, uint32_t NSS) { MODIFY_REG(SPIx->CFG2, SPI_CFG2_SSM | SPI_CFG2_SSOE, NSS); } /** * @brief Set NSS Mode * @rmtoll CFG2 SSM LL_SPI_GetNSSMode\n * CFG2 SSOE LL_SPI_GetNSSMode * @param SPIx SPI Instance * @retval Returned value can be one of the following values: * @arg @ref LL_SPI_NSS_SOFT * @arg @ref LL_SPI_NSS_HARD_INPUT * @arg @ref LL_SPI_NSS_HARD_OUTPUT */ __STATIC_INLINE uint32_t LL_SPI_GetNSSMode(SPI_TypeDef *SPIx) { return (uint32_t)(READ_BIT(SPIx->CFG2, SPI_CFG2_SSM | SPI_CFG2_SSOE)); } /** * @brief Enable NSS pulse mgt * @note This configuration can not be changed when SPI is enabled. * This bit is not used in SPI TI mode. * @rmtoll CFG2 SSOM LL_SPI_EnableNSSPulseMgt * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_EnableNSSPulseMgt(SPI_TypeDef *SPIx) { SET_BIT(SPIx->CFG2, SPI_CFG2_SSOM); } /** * @brief Disable NSS pulse mgt * @note This configuration can not be changed when SPI is enabled. * This bit is not used in SPI TI mode. * @rmtoll CFG2 SSOM LL_SPI_DisableNSSPulseMgt * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_DisableNSSPulseMgt(SPI_TypeDef *SPIx) { CLEAR_BIT(SPIx->CFG2, SPI_CFG2_SSOM); } /** * @brief Check if NSS pulse is enabled * @rmtoll CFG2 SSOM LL_SPI_IsEnabledNSSPulse * @param SPIx SPI Instance * @retval State of bit (1 or 0) */ __STATIC_INLINE uint32_t LL_SPI_IsEnabledNSSPulse(SPI_TypeDef *SPIx) { return ((READ_BIT(SPIx->CFG2, SPI_CFG2_SSOM) == SPI_CFG2_SSOM) ? 1UL : 0UL); } /** * @} */ /** @defgroup SPI_LL_EF_FLAG_Management FLAG_Management * @{ */ /** * @brief Check if there is enough data in FIFO to read a full packet * @rmtoll SR RXP LL_SPI_IsActiveFlag_RXP * @param SPIx SPI Instance * @retval State of bit (1 or 0) */ __STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_RXP(SPI_TypeDef *SPIx) { return ((READ_BIT(SPIx->SR, SPI_SR_RXP) == (SPI_SR_RXP)) ? 1UL : 0UL); } /** * @brief Check if there is enough space in FIFO to hold a full packet * @rmtoll SR TXP LL_SPI_IsActiveFlag_TXP * @param SPIx SPI Instance * @retval State of bit (1 or 0) */ __STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_TXP(SPI_TypeDef *SPIx) { return ((READ_BIT(SPIx->SR, SPI_SR_TXP) == (SPI_SR_TXP)) ? 1UL : 0UL); } /** * @brief Check if there enough space in FIFO to hold a full packet, AND enough data to read a full packet * @rmtoll SR DXP LL_SPI_IsActiveFlag_DXP * @param SPIx SPI Instance * @retval State of bit (1 or 0) */ __STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_DXP(SPI_TypeDef *SPIx) { return ((READ_BIT(SPIx->SR, SPI_SR_DXP) == (SPI_SR_DXP)) ? 1UL : 0UL); } /** * @brief Check that end of transfer event occurred * @rmtoll SR EOT LL_SPI_IsActiveFlag_EOT * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_EOT(SPI_TypeDef *SPIx) { return ((READ_BIT(SPIx->SR, SPI_SR_EOT) == (SPI_SR_EOT)) ? 1UL : 0UL); } /** * @brief Check that all required data has been filled in the fifo according to transfer size * @rmtoll SR TXTF LL_SPI_IsActiveFlag_TXTF * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_TXTF(SPI_TypeDef *SPIx) { return ((READ_BIT(SPIx->SR, SPI_SR_TXTF) == (SPI_SR_TXTF)) ? 1UL : 0UL); } /** * @brief Get Underrun error flag * @rmtoll SR UDR LL_SPI_IsActiveFlag_UDR * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_UDR(SPI_TypeDef *SPIx) { return ((READ_BIT(SPIx->SR, SPI_SR_UDR) == (SPI_SR_UDR)) ? 1UL : 0UL); } /** * @brief Get CRC error flag * @rmtoll SR CRCE LL_SPI_IsActiveFlag_CRCERR * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_CRCERR(SPI_TypeDef *SPIx) { return ((READ_BIT(SPIx->SR, SPI_SR_CRCE) == (SPI_SR_CRCE)) ? 1UL : 0UL); } /** * @brief Get Mode fault error flag * @rmtoll SR MODF LL_SPI_IsActiveFlag_MODF * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_MODF(SPI_TypeDef *SPIx) { return ((READ_BIT(SPIx->SR, SPI_SR_MODF) == (SPI_SR_MODF)) ? 1UL : 0UL); } /** * @brief Get Overrun error flag * @rmtoll SR OVR LL_SPI_IsActiveFlag_OVR * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_OVR(SPI_TypeDef *SPIx) { return ((READ_BIT(SPIx->SR, SPI_SR_OVR) == (SPI_SR_OVR)) ? 1UL : 0UL); } /** * @brief Get TI Frame format error flag * @rmtoll SR TIFRE LL_SPI_IsActiveFlag_FRE * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_FRE(SPI_TypeDef *SPIx) { return ((READ_BIT(SPIx->SR, SPI_SR_TIFRE) == (SPI_SR_TIFRE)) ? 1UL : 0UL); } /** * @brief Check if the additional number of data has been reloaded * @rmtoll SR TSERF LL_SPI_IsActiveFlag_TSER * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_TSER(SPI_TypeDef *SPIx) { return ((READ_BIT(SPIx->SR, SPI_SR_TSERF) == (SPI_SR_TSERF)) ? 1UL : 0UL); } /** * @brief Check if a suspend operation is done * @rmtoll SR SUSP LL_SPI_IsActiveFlag_SUSP * @param SPIx SPI Instance * @retval State of bit (1 or 0) */ __STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_SUSP(SPI_TypeDef *SPIx) { return ((READ_BIT(SPIx->SR, SPI_SR_SUSP) == (SPI_SR_SUSP)) ? 1UL : 0UL); } /** * @brief Check if last TxFIFO or CRC frame transmission is completed * @rmtoll SR TXC LL_SPI_IsActiveFlag_TXC * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_TXC(SPI_TypeDef *SPIx) { return ((READ_BIT(SPIx->SR, SPI_SR_TXC) == (SPI_SR_TXC)) ? 1UL : 0UL); } /** * @brief Check if at least one 32-bit data is available in RxFIFO * @rmtoll SR RXWNE LL_SPI_IsActiveFlag_RXWNE * @param SPIx SPI Instance * @retval State of bit (1 or 0) */ __STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_RXWNE(SPI_TypeDef *SPIx) { return ((READ_BIT(SPIx->SR, SPI_SR_RXWNE) == (SPI_SR_RXWNE)) ? 1UL : 0UL); } /** * @brief Get number of data framed remaining in current TSIZE * @rmtoll SR CTSIZE LL_SPI_GetRemainingDataFrames * @param SPIx SPI Instance * @retval 0..0xFFFF */ __STATIC_INLINE uint32_t LL_SPI_GetRemainingDataFrames(SPI_TypeDef *SPIx) { return (uint32_t)(READ_BIT(SPIx->SR, SPI_SR_CTSIZE) >> SPI_SR_CTSIZE_Pos); } /** * @brief Get RxFIFO packing Level * @rmtoll SR RXPLVL LL_SPI_GetRxFIFOPackingLevel * @param SPIx SPI Instance * @retval Returned value can be one of the following values: * @arg @ref LL_SPI_RX_FIFO_0PACKET * @arg @ref LL_SPI_RX_FIFO_1PACKET * @arg @ref LL_SPI_RX_FIFO_2PACKET * @arg @ref LL_SPI_RX_FIFO_3PACKET */ __STATIC_INLINE uint32_t LL_SPI_GetRxFIFOPackingLevel(SPI_TypeDef *SPIx) { return (uint32_t)(READ_BIT(SPIx->SR, SPI_SR_RXPLVL)); } /** * @brief Clear End Of Transfer flag * @rmtoll IFCR EOTC LL_SPI_ClearFlag_EOT * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_ClearFlag_EOT(SPI_TypeDef *SPIx) { SET_BIT(SPIx->IFCR, SPI_IFCR_EOTC); } /** * @brief Clear TXTF flag * @rmtoll IFCR TXTFC LL_SPI_ClearFlag_TXTF * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_ClearFlag_TXTF(SPI_TypeDef *SPIx) { SET_BIT(SPIx->IFCR, SPI_IFCR_TXTFC); } /** * @brief Clear Underrun error flag * @rmtoll IFCR UDRC LL_SPI_ClearFlag_UDR * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_ClearFlag_UDR(SPI_TypeDef *SPIx) { SET_BIT(SPIx->IFCR, SPI_IFCR_UDRC); } /** * @brief Clear Overrun error flag * @rmtoll IFCR OVRC LL_SPI_ClearFlag_OVR * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_ClearFlag_OVR(SPI_TypeDef *SPIx) { SET_BIT(SPIx->IFCR, SPI_IFCR_OVRC); } /** * @brief Clear CRC error flag * @rmtoll IFCR CRCEC LL_SPI_ClearFlag_CRCERR * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_ClearFlag_CRCERR(SPI_TypeDef *SPIx) { SET_BIT(SPIx->IFCR, SPI_IFCR_CRCEC); } /** * @brief Clear Mode fault error flag * @rmtoll IFCR MODFC LL_SPI_ClearFlag_MODF * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_ClearFlag_MODF(SPI_TypeDef *SPIx) { SET_BIT(SPIx->IFCR, SPI_IFCR_MODFC); } /** * @brief Clear Frame format error flag * @rmtoll IFCR TIFREC LL_SPI_ClearFlag_FRE * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_ClearFlag_FRE(SPI_TypeDef *SPIx) { SET_BIT(SPIx->IFCR, SPI_IFCR_TIFREC); } /** * @brief Clear TSER flag * @rmtoll IFCR TSERFC LL_SPI_ClearFlag_TSER * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_ClearFlag_TSER(SPI_TypeDef *SPIx) { SET_BIT(SPIx->IFCR, SPI_IFCR_TSERFC); } /** * @brief Clear SUSP flag * @rmtoll IFCR SUSPC LL_SPI_ClearFlag_SUSP * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_ClearFlag_SUSP(SPI_TypeDef *SPIx) { SET_BIT(SPIx->IFCR, SPI_IFCR_SUSPC); } /** * @} */ /** @defgroup SPI_LL_EF_IT_Management IT_Management * @{ */ /** * @brief Enable Rx Packet available IT * @rmtoll IER RXPIE LL_SPI_EnableIT_RXP * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_EnableIT_RXP(SPI_TypeDef *SPIx) { SET_BIT(SPIx->IER, SPI_IER_RXPIE); } /** * @brief Enable Tx Packet space available IT * @rmtoll IER TXPIE LL_SPI_EnableIT_TXP * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_EnableIT_TXP(SPI_TypeDef *SPIx) { SET_BIT(SPIx->IER, SPI_IER_TXPIE); } /** * @brief Enable Duplex Packet available IT * @rmtoll IER DXPIE LL_SPI_EnableIT_DXP * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_EnableIT_DXP(SPI_TypeDef *SPIx) { SET_BIT(SPIx->IER, SPI_IER_DXPIE); } /** * @brief Enable End Of Transfer IT * @rmtoll IER EOTIE LL_SPI_EnableIT_EOT * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_EnableIT_EOT(SPI_TypeDef *SPIx) { SET_BIT(SPIx->IER, SPI_IER_EOTIE); } /** * @brief Enable TXTF IT * @rmtoll IER TXTFIE LL_SPI_EnableIT_TXTF * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_EnableIT_TXTF(SPI_TypeDef *SPIx) { SET_BIT(SPIx->IER, SPI_IER_TXTFIE); } /** * @brief Enable Underrun IT * @rmtoll IER UDRIE LL_SPI_EnableIT_UDR * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_EnableIT_UDR(SPI_TypeDef *SPIx) { SET_BIT(SPIx->IER, SPI_IER_UDRIE); } /** * @brief Enable Overrun IT * @rmtoll IER OVRIE LL_SPI_EnableIT_OVR * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_EnableIT_OVR(SPI_TypeDef *SPIx) { SET_BIT(SPIx->IER, SPI_IER_OVRIE); } /** * @brief Enable CRC Error IT * @rmtoll IER CRCEIE LL_SPI_EnableIT_CRCERR * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_EnableIT_CRCERR(SPI_TypeDef *SPIx) { SET_BIT(SPIx->IER, SPI_IER_CRCEIE); } /** * @brief Enable TI Frame Format Error IT * @rmtoll IER TIFREIE LL_SPI_EnableIT_FRE * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_EnableIT_FRE(SPI_TypeDef *SPIx) { SET_BIT(SPIx->IER, SPI_IER_TIFREIE); } /** * @brief Enable MODF IT * @rmtoll IER MODFIE LL_SPI_EnableIT_MODF * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_EnableIT_MODF(SPI_TypeDef *SPIx) { SET_BIT(SPIx->IER, SPI_IER_MODFIE); } /** * @brief Enable TSER reload IT * @rmtoll IER TSERFIE LL_SPI_EnableIT_TSER * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_EnableIT_TSER(SPI_TypeDef *SPIx) { SET_BIT(SPIx->IER, SPI_IER_TSERFIE); } /** * @brief Disable Rx Packet available IT * @rmtoll IER RXPIE LL_SPI_DisableIT_RXP * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_DisableIT_RXP(SPI_TypeDef *SPIx) { CLEAR_BIT(SPIx->IER, SPI_IER_RXPIE); } /** * @brief Disable Tx Packet space available IT * @rmtoll IER TXPIE LL_SPI_DisableIT_TXP * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_DisableIT_TXP(SPI_TypeDef *SPIx) { CLEAR_BIT(SPIx->IER, SPI_IER_TXPIE); } /** * @brief Disable Duplex Packet available IT * @rmtoll IER DXPIE LL_SPI_DisableIT_DXP * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_DisableIT_DXP(SPI_TypeDef *SPIx) { CLEAR_BIT(SPIx->IER, SPI_IER_DXPIE); } /** * @brief Disable End Of Transfer IT * @rmtoll IER EOTIE LL_SPI_DisableIT_EOT * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_DisableIT_EOT(SPI_TypeDef *SPIx) { CLEAR_BIT(SPIx->IER, SPI_IER_EOTIE); } /** * @brief Disable TXTF IT * @rmtoll IER TXTFIE LL_SPI_DisableIT_TXTF * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_DisableIT_TXTF(SPI_TypeDef *SPIx) { CLEAR_BIT(SPIx->IER, SPI_IER_TXTFIE); } /** * @brief Disable Underrun IT * @rmtoll IER UDRIE LL_SPI_DisableIT_UDR * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_DisableIT_UDR(SPI_TypeDef *SPIx) { CLEAR_BIT(SPIx->IER, SPI_IER_UDRIE); } /** * @brief Disable Overrun IT * @rmtoll IER OVRIE LL_SPI_DisableIT_OVR * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_DisableIT_OVR(SPI_TypeDef *SPIx) { CLEAR_BIT(SPIx->IER, SPI_IER_OVRIE); } /** * @brief Disable CRC Error IT * @rmtoll IER CRCEIE LL_SPI_DisableIT_CRCERR * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_DisableIT_CRCERR(SPI_TypeDef *SPIx) { CLEAR_BIT(SPIx->IER, SPI_IER_CRCEIE); } /** * @brief Disable TI Frame Format Error IT * @rmtoll IER TIFREIE LL_SPI_DisableIT_FRE * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_DisableIT_FRE(SPI_TypeDef *SPIx) { CLEAR_BIT(SPIx->IER, SPI_IER_TIFREIE); } /** * @brief Disable MODF IT * @rmtoll IER MODFIE LL_SPI_DisableIT_MODF * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_DisableIT_MODF(SPI_TypeDef *SPIx) { CLEAR_BIT(SPIx->IER, SPI_IER_MODFIE); } /** * @brief Disable TSER reload IT * @rmtoll IER TSERFIE LL_SPI_DisableIT_TSER * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_DisableIT_TSER(SPI_TypeDef *SPIx) { CLEAR_BIT(SPIx->IER, SPI_IER_TSERFIE); } /** * @brief Check if Rx Packet available IT is enabled * @rmtoll IER RXPIE LL_SPI_IsEnabledIT_RXP * @param SPIx SPI Instance * @retval State of bit (1 or 0) */ __STATIC_INLINE uint32_t LL_SPI_IsEnabledIT_RXP(SPI_TypeDef *SPIx) { return ((READ_BIT(SPIx->IER, SPI_IER_RXPIE) == (SPI_IER_RXPIE)) ? 1UL : 0UL); } /** * @brief Check if Tx Packet space available IT is enabled * @rmtoll IER TXPIE LL_SPI_IsEnabledIT_TXP * @param SPIx SPI Instance * @retval State of bit (1 or 0) */ __STATIC_INLINE uint32_t LL_SPI_IsEnabledIT_TXP(SPI_TypeDef *SPIx) { return ((READ_BIT(SPIx->IER, SPI_IER_TXPIE) == (SPI_IER_TXPIE)) ? 1UL : 0UL); } /** * @brief Check if Duplex Packet available IT is enabled * @rmtoll IER DXPIE LL_SPI_IsEnabledIT_DXP * @param SPIx SPI Instance * @retval State of bit (1 or 0) */ __STATIC_INLINE uint32_t LL_SPI_IsEnabledIT_DXP(SPI_TypeDef *SPIx) { return ((READ_BIT(SPIx->IER, SPI_IER_DXPIE) == (SPI_IER_DXPIE)) ? 1UL : 0UL); } /** * @brief Check if End Of Transfer IT is enabled * @rmtoll IER EOTIE LL_SPI_IsEnabledIT_EOT * @param SPIx SPI Instance * @retval State of bit (1 or 0) */ __STATIC_INLINE uint32_t LL_SPI_IsEnabledIT_EOT(SPI_TypeDef *SPIx) { return ((READ_BIT(SPIx->IER, SPI_IER_EOTIE) == (SPI_IER_EOTIE)) ? 1UL : 0UL); } /** * @brief Check if TXTF IT is enabled * @rmtoll IER TXTFIE LL_SPI_IsEnabledIT_TXTF * @param SPIx SPI Instance * @retval State of bit (1 or 0) */ __STATIC_INLINE uint32_t LL_SPI_IsEnabledIT_TXTF(SPI_TypeDef *SPIx) { return ((READ_BIT(SPIx->IER, SPI_IER_TXTFIE) == (SPI_IER_TXTFIE)) ? 1UL : 0UL); } /** * @brief Check if Underrun IT is enabled * @rmtoll IER UDRIE LL_SPI_IsEnabledIT_UDR * @param SPIx SPI Instance * @retval State of bit (1 or 0) */ __STATIC_INLINE uint32_t LL_SPI_IsEnabledIT_UDR(SPI_TypeDef *SPIx) { return ((READ_BIT(SPIx->IER, SPI_IER_UDRIE) == (SPI_IER_UDRIE)) ? 1UL : 0UL); } /** * @brief Check if Overrun IT is enabled * @rmtoll IER OVRIE LL_SPI_IsEnabledIT_OVR * @param SPIx SPI Instance * @retval State of bit (1 or 0) */ __STATIC_INLINE uint32_t LL_SPI_IsEnabledIT_OVR(SPI_TypeDef *SPIx) { return ((READ_BIT(SPIx->IER, SPI_IER_OVRIE) == (SPI_IER_OVRIE)) ? 1UL : 0UL); } /** * @brief Check if CRC Error IT is enabled * @rmtoll IER CRCEIE LL_SPI_IsEnabledIT_CRCERR * @param SPIx SPI Instance * @retval State of bit (1 or 0) */ __STATIC_INLINE uint32_t LL_SPI_IsEnabledIT_CRCERR(SPI_TypeDef *SPIx) { return ((READ_BIT(SPIx->IER, SPI_IER_CRCEIE) == (SPI_IER_CRCEIE)) ? 1UL : 0UL); } /** * @brief Check if TI Frame Format Error IT is enabled * @rmtoll IER TIFREIE LL_SPI_IsEnabledIT_FRE * @param SPIx SPI Instance * @retval State of bit (1 or 0) */ __STATIC_INLINE uint32_t LL_SPI_IsEnabledIT_FRE(SPI_TypeDef *SPIx) { return ((READ_BIT(SPIx->IER, SPI_IER_TIFREIE) == (SPI_IER_TIFREIE)) ? 1UL : 0UL); } /** * @brief Check if MODF IT is enabled * @rmtoll IER MODFIE LL_SPI_IsEnabledIT_MODF * @param SPIx SPI Instance * @retval State of bit (1 or 0) */ __STATIC_INLINE uint32_t LL_SPI_IsEnabledIT_MODF(SPI_TypeDef *SPIx) { return ((READ_BIT(SPIx->IER, SPI_IER_MODFIE) == (SPI_IER_MODFIE)) ? 1UL : 0UL); } /** * @brief Check if TSER reload IT is enabled * @rmtoll IER TSERFIE LL_SPI_IsEnabledIT_TSER * @param SPIx SPI Instance * @retval State of bit (1 or 0) */ __STATIC_INLINE uint32_t LL_SPI_IsEnabledIT_TSER(SPI_TypeDef *SPIx) { return ((READ_BIT(SPIx->IER, SPI_IER_TSERFIE) == (SPI_IER_TSERFIE)) ? 1UL : 0UL); } /** * @} */ /** @defgroup SPI_LL_EF_DMA_Management DMA Management * @{ */ /** * @brief Enable DMA Rx * @rmtoll CFG1 RXDMAEN LL_SPI_EnableDMAReq_RX * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_EnableDMAReq_RX(SPI_TypeDef *SPIx) { SET_BIT(SPIx->CFG1, SPI_CFG1_RXDMAEN); } /** * @brief Disable DMA Rx * @rmtoll CFG1 RXDMAEN LL_SPI_DisableDMAReq_RX * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_DisableDMAReq_RX(SPI_TypeDef *SPIx) { CLEAR_BIT(SPIx->CFG1, SPI_CFG1_RXDMAEN); } /** * @brief Check if DMA Rx is enabled * @rmtoll CFG1 RXDMAEN LL_SPI_IsEnabledDMAReq_RX * @param SPIx SPI Instance * @retval State of bit (1 or 0) */ __STATIC_INLINE uint32_t LL_SPI_IsEnabledDMAReq_RX(SPI_TypeDef *SPIx) { return ((READ_BIT(SPIx->CFG1, SPI_CFG1_RXDMAEN) == (SPI_CFG1_RXDMAEN)) ? 1UL : 0UL); } /** * @brief Enable DMA Tx * @rmtoll CFG1 TXDMAEN LL_SPI_EnableDMAReq_TX * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_EnableDMAReq_TX(SPI_TypeDef *SPIx) { SET_BIT(SPIx->CFG1, SPI_CFG1_TXDMAEN); } /** * @brief Disable DMA Tx * @rmtoll CFG1 TXDMAEN LL_SPI_DisableDMAReq_TX * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_DisableDMAReq_TX(SPI_TypeDef *SPIx) { CLEAR_BIT(SPIx->CFG1, SPI_CFG1_TXDMAEN); } /** * @brief Check if DMA Tx is enabled * @rmtoll CFG1 TXDMAEN LL_SPI_IsEnabledDMAReq_TX * @param SPIx SPI Instance * @retval State of bit (1 or 0) */ __STATIC_INLINE uint32_t LL_SPI_IsEnabledDMAReq_TX(SPI_TypeDef *SPIx) { return ((READ_BIT(SPIx->CFG1, SPI_CFG1_TXDMAEN) == (SPI_CFG1_TXDMAEN)) ? 1UL : 0UL); } /** * @} */ /** @defgroup SPI_LL_EF_DATA_Management DATA_Management * @{ */ /** * @brief Read Data Register * @rmtoll RXDR . LL_SPI_ReceiveData8 * @param SPIx SPI Instance * @retval 0..0xFF */ __STATIC_INLINE uint8_t LL_SPI_ReceiveData8(SPI_TypeDef *SPIx) { return (*((__IO uint8_t *)&SPIx->RXDR)); } /** * @brief Read Data Register * @rmtoll RXDR . LL_SPI_ReceiveData16 * @param SPIx SPI Instance * @retval 0..0xFFFF */ __STATIC_INLINE uint16_t LL_SPI_ReceiveData16(SPI_TypeDef *SPIx) { return (uint16_t)(READ_REG(SPIx->RXDR)); } /** * @brief Read Data Register * @rmtoll RXDR . LL_SPI_ReceiveData32 * @param SPIx SPI Instance * @retval 0..0xFFFFFFFF */ __STATIC_INLINE uint32_t LL_SPI_ReceiveData32(SPI_TypeDef *SPIx) { return (*((__IO uint32_t *)&SPIx->RXDR)); } /** * @brief Write Data Register * @rmtoll TXDR . LL_SPI_TransmitData8 * @param SPIx SPI Instance * @param TxData 0..0xFF * @retval None */ __STATIC_INLINE void LL_SPI_TransmitData8(SPI_TypeDef *SPIx, uint8_t TxData) { *((__IO uint8_t *)&SPIx->TXDR) = TxData; } /** * @brief Write Data Register * @rmtoll TXDR . LL_SPI_TransmitData16 * @param SPIx SPI Instance * @param TxData 0..0xFFFF * @retval None */ __STATIC_INLINE void LL_SPI_TransmitData16(SPI_TypeDef *SPIx, uint16_t TxData) { #if defined (__GNUC__) __IO uint16_t *spitxdr = ((__IO uint16_t *)&SPIx->TXDR); *spitxdr = TxData; #else SPIx->TXDR = TxData; #endif /* __GNUC__ */ } /** * @brief Write Data Register * @rmtoll TXDR . LL_SPI_TransmitData32 * @param SPIx SPI Instance * @param TxData 0..0xFFFFFFFF * @retval None */ __STATIC_INLINE void LL_SPI_TransmitData32(SPI_TypeDef *SPIx, uint32_t TxData) { *((__IO uint32_t *)&SPIx->TXDR) = TxData; } /** * @brief Set polynomial for CRC calcul * @rmtoll CRCPOLY CRCPOLY LL_SPI_SetCRCPolynomial * @param SPIx SPI Instance * @param CRCPoly 0..0xFFFFFFFF * @retval None */ __STATIC_INLINE void LL_SPI_SetCRCPolynomial(SPI_TypeDef *SPIx, uint32_t CRCPoly) { WRITE_REG(SPIx->CRCPOLY, CRCPoly); } /** * @brief Get polynomial for CRC calcul * @rmtoll CRCPOLY CRCPOLY LL_SPI_GetCRCPolynomial * @param SPIx SPI Instance * @retval 0..0xFFFFFFFF */ __STATIC_INLINE uint32_t LL_SPI_GetCRCPolynomial(SPI_TypeDef *SPIx) { return (uint32_t)(READ_REG(SPIx->CRCPOLY)); } /** * @brief Set the underrun pattern * @rmtoll UDRDR UDRDR LL_SPI_SetUDRPattern * @param SPIx SPI Instance * @param Pattern 0..0xFFFFFFFF * @retval None */ __STATIC_INLINE void LL_SPI_SetUDRPattern(SPI_TypeDef *SPIx, uint32_t Pattern) { WRITE_REG(SPIx->UDRDR, Pattern); } /** * @brief Get the underrun pattern * @rmtoll UDRDR UDRDR LL_SPI_GetUDRPattern * @param SPIx SPI Instance * @retval 0..0xFFFFFFFF */ __STATIC_INLINE uint32_t LL_SPI_GetUDRPattern(SPI_TypeDef *SPIx) { return (uint32_t)(READ_REG(SPIx->UDRDR)); } /** * @brief Get Rx CRC * @rmtoll RXCRCR RXCRC LL_SPI_GetRxCRC * @param SPIx SPI Instance * @retval 0..0xFFFFFFFF */ __STATIC_INLINE uint32_t LL_SPI_GetRxCRC(SPI_TypeDef *SPIx) { return (uint32_t)(READ_REG(SPIx->RXCRC)); } /** * @brief Get Tx CRC * @rmtoll TXCRCR TXCRC LL_SPI_GetTxCRC * @param SPIx SPI Instance * @retval 0..0xFFFFFFFF */ __STATIC_INLINE uint32_t LL_SPI_GetTxCRC(SPI_TypeDef *SPIx) { return (uint32_t)(READ_REG(SPIx->TXCRC)); } /** * @} */ #if defined(USE_FULL_LL_DRIVER) /** @defgroup SPI_LL_EF_Init Initialization and de-initialization functions * @{ */ ErrorStatus LL_SPI_DeInit(SPI_TypeDef *SPIx); ErrorStatus LL_SPI_Init(SPI_TypeDef *SPIx, LL_SPI_InitTypeDef *SPI_InitStruct); void LL_SPI_StructInit(LL_SPI_InitTypeDef *SPI_InitStruct); /** * @} */ #endif /* USE_FULL_LL_DRIVER */ /** * @} */ /** @defgroup I2S_LL I2S * @{ */ /* Private variables ---------------------------------------------------------*/ /* Private constants ---------------------------------------------------------*/ /* Private macros ------------------------------------------------------------*/ /* Exported types ------------------------------------------------------------*/ #if defined(USE_FULL_LL_DRIVER) /** @defgroup I2S_LL_ES_INIT I2S Exported Init structure * @{ */ /** * @brief I2S Init structure definition */ typedef struct { uint32_t Mode; /*!< Specifies the I2S operating mode. This parameter can be a value of @ref I2S_LL_EC_MODE This feature can be modified afterwards using unitary function @ref LL_I2S_SetTransferMode().*/ uint32_t Standard; /*!< Specifies the standard used for the I2S communication. This parameter can be a value of @ref I2S_LL_EC_STANDARD This feature can be modified afterwards using unitary function @ref LL_I2S_SetStandard().*/ uint32_t DataFormat; /*!< Specifies the data format for the I2S communication. This parameter can be a value of @ref I2S_LL_EC_DATA_FORMAT This feature can be modified afterwards using unitary function @ref LL_I2S_SetDataFormat().*/ uint32_t MCLKOutput; /*!< Specifies whether the I2S MCLK output is enabled or not. This parameter can be a value of @ref I2S_LL_EC_MCLK_OUTPUT This feature can be modified afterwards using unitary functions @ref LL_I2S_EnableMasterClock() or @ref LL_I2S_DisableMasterClock.*/ uint32_t AudioFreq; /*!< Specifies the frequency selected for the I2S communication. This parameter can be a value of @ref I2S_LL_EC_AUDIO_FREQ Audio Frequency can be modified afterwards using Reference manual formulas to calculate Prescaler Linear, Parity and unitary functions @ref LL_I2S_SetPrescalerLinear() and @ref LL_I2S_SetPrescalerParity() to set it.*/ uint32_t ClockPolarity; /*!< Specifies the idle state of the I2S clock. This parameter can be a value of @ref I2S_LL_EC_POLARITY This feature can be modified afterwards using unitary function @ref LL_I2S_SetClockPolarity().*/ } LL_I2S_InitTypeDef; /** * @} */ #endif /*USE_FULL_LL_DRIVER*/ /* Exported constants --------------------------------------------------------*/ /** @defgroup I2S_LL_Exported_Constants I2S Exported Constants * @{ */ /** @defgroup I2S_LL_EC_DATA_FORMAT Data Format * @{ */ #define LL_I2S_DATAFORMAT_16B (0x00000000UL) #define LL_I2S_DATAFORMAT_16B_EXTENDED (SPI_I2SCFGR_CHLEN) #define LL_I2S_DATAFORMAT_24B (SPI_I2SCFGR_CHLEN | SPI_I2SCFGR_DATLEN_0) #define LL_I2S_DATAFORMAT_24B_LEFT_ALIGNED (SPI_I2SCFGR_CHLEN | SPI_I2SCFGR_DATLEN_0 | SPI_I2SCFGR_DATFMT) #define LL_I2S_DATAFORMAT_32B (SPI_I2SCFGR_CHLEN | SPI_I2SCFGR_DATLEN_1) /** * @} */ /** @defgroup I2S_LL_EC_CHANNEL_LENGTH_TYPE Type of Channel Length * @{ */ #define LL_I2S_SLAVE_VARIABLE_CH_LENGTH (0x00000000UL) #define LL_I2S_SLAVE_FIXED_CH_LENGTH (SPI_I2SCFGR_FIXCH) /** * @} */ /** @defgroup I2S_LL_EC_POLARITY Clock Polarity * @{ */ #define LL_I2S_POLARITY_LOW (0x00000000UL) #define LL_I2S_POLARITY_HIGH (SPI_I2SCFGR_CKPOL) /** * @} */ /** @defgroup I2S_LL_EC_STANDARD I2S Standard * @{ */ #define LL_I2S_STANDARD_PHILIPS (0x00000000UL) #define LL_I2S_STANDARD_MSB (SPI_I2SCFGR_I2SSTD_0) #define LL_I2S_STANDARD_LSB (SPI_I2SCFGR_I2SSTD_1) #define LL_I2S_STANDARD_PCM_SHORT (SPI_I2SCFGR_I2SSTD_0 | SPI_I2SCFGR_I2SSTD_1) #define LL_I2S_STANDARD_PCM_LONG (SPI_I2SCFGR_I2SSTD_0 | SPI_I2SCFGR_I2SSTD_1 | SPI_I2SCFGR_PCMSYNC) /** * @} */ /** @defgroup I2S_LL_EC_MODE Operation Mode * @{ */ #define LL_I2S_MODE_SLAVE_TX (0x00000000UL) #define LL_I2S_MODE_SLAVE_RX (SPI_I2SCFGR_I2SCFG_0) #define LL_I2S_MODE_SLAVE_FULL_DUPLEX (SPI_I2SCFGR_I2SCFG_2) #define LL_I2S_MODE_MASTER_TX (SPI_I2SCFGR_I2SCFG_1) #define LL_I2S_MODE_MASTER_RX (SPI_I2SCFGR_I2SCFG_1 | SPI_I2SCFGR_I2SCFG_0) #define LL_I2S_MODE_MASTER_FULL_DUPLEX (SPI_I2SCFGR_I2SCFG_2 | SPI_I2SCFGR_I2SCFG_0) /** * @} */ /** @defgroup I2S_LL_EC_PRESCALER_PARITY Prescaler Factor * @{ */ #define LL_I2S_PRESCALER_PARITY_EVEN (0x00000000UL) /*!< Odd factor: Real divider value is = I2SDIV * 2 */ #define LL_I2S_PRESCALER_PARITY_ODD (0x00000001UL) /*!< Odd factor: Real divider value is = (I2SDIV * 2)+1 */ /** * @} */ /** @defgroup I2S_LL_EC_FIFO_TH FIFO Threshold Level * @{ */ #define LL_I2S_FIFO_TH_01DATA (LL_SPI_FIFO_TH_01DATA) #define LL_I2S_FIFO_TH_02DATA (LL_SPI_FIFO_TH_02DATA) #define LL_I2S_FIFO_TH_03DATA (LL_SPI_FIFO_TH_03DATA) #define LL_I2S_FIFO_TH_04DATA (LL_SPI_FIFO_TH_04DATA) #define LL_I2S_FIFO_TH_05DATA (LL_SPI_FIFO_TH_05DATA) #define LL_I2S_FIFO_TH_06DATA (LL_SPI_FIFO_TH_06DATA) #define LL_I2S_FIFO_TH_07DATA (LL_SPI_FIFO_TH_07DATA) #define LL_I2S_FIFO_TH_08DATA (LL_SPI_FIFO_TH_08DATA) /** * @} */ /** @defgroup I2S_LL_EC_BIT_ORDER Transmission Bit Order * @{ */ #define LL_I2S_LSB_FIRST (LL_SPI_LSB_FIRST) #define LL_I2S_MSB_FIRST (LL_SPI_MSB_FIRST) /** * @} */ #if defined(USE_FULL_LL_DRIVER) /** @defgroup I2S_LL_EC_MCLK_OUTPUT MCLK Output * @{ */ #define LL_I2S_MCLK_OUTPUT_DISABLE (0x00000000UL) #define LL_I2S_MCLK_OUTPUT_ENABLE (SPI_I2SCFGR_MCKOE) /** * @} */ /** @defgroup I2S_LL_EC_AUDIO_FREQ Audio Frequency * @{ */ #define LL_I2S_AUDIOFREQ_192K 192000UL /*!< Audio Frequency configuration 192000 Hz */ #define LL_I2S_AUDIOFREQ_96K 96000UL /*!< Audio Frequency configuration 96000 Hz */ #define LL_I2S_AUDIOFREQ_48K 48000UL /*!< Audio Frequency configuration 48000 Hz */ #define LL_I2S_AUDIOFREQ_44K 44100UL /*!< Audio Frequency configuration 44100 Hz */ #define LL_I2S_AUDIOFREQ_32K 32000UL /*!< Audio Frequency configuration 32000 Hz */ #define LL_I2S_AUDIOFREQ_22K 22050UL /*!< Audio Frequency configuration 22050 Hz */ #define LL_I2S_AUDIOFREQ_16K 16000UL /*!< Audio Frequency configuration 16000 Hz */ #define LL_I2S_AUDIOFREQ_11K 11025UL /*!< Audio Frequency configuration 11025 Hz */ #define LL_I2S_AUDIOFREQ_8K 8000UL /*!< Audio Frequency configuration 8000 Hz */ #define LL_I2S_AUDIOFREQ_DEFAULT 0UL /*!< Audio Freq not specified. Register I2SDIV = 0 */ /** * @} */ #endif /* USE_FULL_LL_DRIVER */ /** * @} */ /* Exported macro ------------------------------------------------------------*/ /** @defgroup I2S_LL_Exported_Macros I2S Exported Macros * @{ */ /** @defgroup I2S_LL_EM_WRITE_READ Common Write and read registers Macros * @{ */ /** * @brief Write a value in I2S register * @param __INSTANCE__ I2S Instance * @param __REG__ Register to be written * @param __VALUE__ Value to be written in the register * @retval None */ #define LL_I2S_WriteReg(__INSTANCE__, __REG__, __VALUE__) WRITE_REG(__INSTANCE__->__REG__, (__VALUE__)) /** * @brief Read a value in I2S register * @param __INSTANCE__ I2S Instance * @param __REG__ Register to be read * @retval Register value */ #define LL_I2S_ReadReg(__INSTANCE__, __REG__) READ_REG(__INSTANCE__->__REG__) /** * @} */ /** * @} */ /* Exported functions --------------------------------------------------------*/ /** @defgroup I2S_LL_Exported_Functions I2S Exported Functions * @{ */ /** @defgroup I2S_LL_EF_Configuration Configuration * @{ */ /** * @brief Set I2S Data frame format * @rmtoll I2SCFGR DATLEN LL_I2S_SetDataFormat\n * I2SCFGR CHLEN LL_I2S_SetDataFormat\n * I2SCFGR DATFMT LL_I2S_SetDataFormat * @param SPIx SPI Handle * @param DataLength This parameter can be one of the following values: * @arg @ref LL_I2S_DATAFORMAT_16B * @arg @ref LL_I2S_DATAFORMAT_16B_EXTENDED * @arg @ref LL_I2S_DATAFORMAT_24B * @arg @ref LL_I2S_DATAFORMAT_24B_LEFT_ALIGNED * @arg @ref LL_I2S_DATAFORMAT_32B * @retval None */ __STATIC_INLINE void LL_I2S_SetDataFormat(SPI_TypeDef *SPIx, uint32_t DataLength) { MODIFY_REG(SPIx->I2SCFGR, SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN | SPI_I2SCFGR_DATFMT, DataLength); } /** * @brief Get I2S Data frame format * @rmtoll I2SCFGR DATLEN LL_I2S_GetDataFormat\n * I2SCFGR CHLEN LL_I2S_GetDataFormat\n * I2SCFGR DATFMT LL_I2S_GetDataFormat * @param SPIx SPI Handle * @retval Return value can be one of the following values: * @arg @ref LL_I2S_DATAFORMAT_16B * @arg @ref LL_I2S_DATAFORMAT_16B_EXTENDED * @arg @ref LL_I2S_DATAFORMAT_24B * @arg @ref LL_I2S_DATAFORMAT_24B_LEFT_ALIGNED * @arg @ref LL_I2S_DATAFORMAT_32B */ __STATIC_INLINE uint32_t LL_I2S_GetDataFormat(SPI_TypeDef *SPIx) { return (uint32_t)(READ_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN | SPI_I2SCFGR_DATFMT)); } /** * @brief Set I2S Channel Length Type * @note This feature is useful with SLAVE only * @rmtoll I2SCFGR FIXCH LL_I2S_SetChannelLengthType * @param SPIx SPI Handle * @param ChannelLengthType This parameter can be one of the following values: * @arg @ref LL_I2S_SLAVE_VARIABLE_CH_LENGTH * @arg @ref LL_I2S_SLAVE_FIXED_CH_LENGTH * @retval None */ __STATIC_INLINE void LL_I2S_SetChannelLengthType(SPI_TypeDef *SPIx, uint32_t ChannelLengthType) { MODIFY_REG(SPIx->I2SCFGR, SPI_I2SCFGR_FIXCH, ChannelLengthType); } /** * @brief Get I2S Channel Length Type * @note This feature is useful with SLAVE only * @rmtoll I2SCFGR FIXCH LL_I2S_GetChannelLengthType * @param SPIx SPI Handle * @retval Return value can be one of the following values: * @arg @ref LL_I2S_SLAVE_VARIABLE_CH_LENGTH * @arg @ref LL_I2S_SLAVE_FIXED_CH_LENGTH */ __STATIC_INLINE uint32_t LL_I2S_GetChannelLengthType(SPI_TypeDef *SPIx) { return (uint32_t)(READ_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_FIXCH)); } /** * @brief Invert the default polarity of WS signal * @rmtoll I2SCFGR WSINV LL_I2S_EnableWordSelectInversion * @param SPIx SPI Handle * @retval None */ __STATIC_INLINE void LL_I2S_EnableWordSelectInversion(SPI_TypeDef *SPIx) { SET_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_WSINV); } /** * @brief Use the default polarity of WS signal * @rmtoll I2SCFGR WSINV LL_I2S_DisableWordSelectInversion * @param SPIx SPI Handle * @retval None */ __STATIC_INLINE void LL_I2S_DisableWordSelectInversion(SPI_TypeDef *SPIx) { CLEAR_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_WSINV); } /** * @brief Check if polarity of WS signal is inverted * @rmtoll I2SCFGR WSINV LL_I2S_IsEnabledWordSelectInversion * @param SPIx SPI Handle * @retval State of bit (1 or 0) */ __STATIC_INLINE uint32_t LL_I2S_IsEnabledWordSelectInversion(SPI_TypeDef *SPIx) { return ((READ_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_WSINV) == (SPI_I2SCFGR_WSINV)) ? 1UL : 0UL); } /** * @brief Set 2S Clock Polarity * @rmtoll I2SCFGR CKPOL LL_I2S_SetClockPolarity * @param SPIx SPI Handle * @param ClockPolarity This parameter can be one of the following values: * @arg @ref LL_I2S_POLARITY_LOW * @arg @ref LL_I2S_POLARITY_HIGH * @retval None */ __STATIC_INLINE void LL_I2S_SetClockPolarity(SPI_TypeDef *SPIx, uint32_t ClockPolarity) { MODIFY_REG(SPIx->I2SCFGR, SPI_I2SCFGR_CKPOL, ClockPolarity); } /** * @brief Get 2S Clock Polarity * @rmtoll I2SCFGR CKPOL LL_I2S_GetClockPolarity * @param SPIx SPI Handle * @retval Return value can be one of the following values: * @arg @ref LL_I2S_POLARITY_LOW * @arg @ref LL_I2S_POLARITY_HIGH */ __STATIC_INLINE uint32_t LL_I2S_GetClockPolarity(SPI_TypeDef *SPIx) { return (uint32_t)(READ_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_CKPOL)); } /** * @brief Set I2S standard * @rmtoll I2SCFGR I2SSTD LL_I2S_SetStandard\n * I2SCFGR PCMSYNC LL_I2S_SetStandard * @param SPIx SPI Handle * @param Standard This parameter can be one of the following values: * @arg @ref LL_I2S_STANDARD_PHILIPS * @arg @ref LL_I2S_STANDARD_MSB * @arg @ref LL_I2S_STANDARD_LSB * @arg @ref LL_I2S_STANDARD_PCM_SHORT * @arg @ref LL_I2S_STANDARD_PCM_LONG * @retval None */ __STATIC_INLINE void LL_I2S_SetStandard(SPI_TypeDef *SPIx, uint32_t Standard) { MODIFY_REG(SPIx->I2SCFGR, SPI_I2SCFGR_I2SSTD | SPI_I2SCFGR_PCMSYNC, Standard); } /** * @brief Get I2S standard * @rmtoll I2SCFGR I2SSTD LL_I2S_GetStandard\n * I2SCFGR PCMSYNC LL_I2S_GetStandard * @param SPIx SPI Handle * @retval Return value can be one of the following values: * @arg @ref LL_I2S_STANDARD_PHILIPS * @arg @ref LL_I2S_STANDARD_MSB * @arg @ref LL_I2S_STANDARD_LSB * @arg @ref LL_I2S_STANDARD_PCM_SHORT * @arg @ref LL_I2S_STANDARD_PCM_LONG */ __STATIC_INLINE uint32_t LL_I2S_GetStandard(SPI_TypeDef *SPIx) { return (uint32_t)(READ_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_I2SSTD | SPI_I2SCFGR_PCMSYNC)); } /** * @brief Set I2S config * @rmtoll I2SCFGR I2SCFG LL_I2S_SetTransferMode * @param SPIx SPI Handle * @param Standard This parameter can be one of the following values: * @arg @ref LL_I2S_MODE_SLAVE_TX * @arg @ref LL_I2S_MODE_SLAVE_RX * @arg @ref LL_I2S_MODE_SLAVE_FULL_DUPLEX * @arg @ref LL_I2S_MODE_MASTER_TX * @arg @ref LL_I2S_MODE_MASTER_RX * @arg @ref LL_I2S_MODE_MASTER_FULL_DUPLEX * @retval None */ __STATIC_INLINE void LL_I2S_SetTransferMode(SPI_TypeDef *SPIx, uint32_t Standard) { MODIFY_REG(SPIx->I2SCFGR, SPI_I2SCFGR_I2SCFG, Standard); } /** * @brief Get I2S config * @rmtoll I2SCFGR I2SCFG LL_I2S_GetTransferMode * @param SPIx SPI Handle * @retval Return value can be one of the following values: * @arg @ref LL_I2S_MODE_SLAVE_TX * @arg @ref LL_I2S_MODE_SLAVE_RX * @arg @ref LL_I2S_MODE_SLAVE_FULL_DUPLEX * @arg @ref LL_I2S_MODE_MASTER_TX * @arg @ref LL_I2S_MODE_MASTER_RX * @arg @ref LL_I2S_MODE_MASTER_FULL_DUPLEX */ __STATIC_INLINE uint32_t LL_I2S_GetTransferMode(SPI_TypeDef *SPIx) { return (uint32_t)(READ_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_I2SCFG)); } /** * @brief Select I2S mode and Enable I2S peripheral * @rmtoll I2SCFGR I2SMOD LL_I2S_Enable\n * CR1 SPE LL_I2S_Enable * @param SPIx SPI Handle * @retval None */ __STATIC_INLINE void LL_I2S_Enable(SPI_TypeDef *SPIx) { SET_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_I2SMOD); SET_BIT(SPIx->CR1, SPI_CR1_SPE); } /** * @brief Disable I2S peripheral and disable I2S mode * @rmtoll CR1 SPE LL_I2S_Disable\n * I2SCFGR I2SMOD LL_I2S_Disable * @param SPIx SPI Handle * @retval None */ __STATIC_INLINE void LL_I2S_Disable(SPI_TypeDef *SPIx) { CLEAR_BIT(SPIx->CR1, SPI_CR1_SPE); CLEAR_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_I2SMOD); } /** * @brief Swap the SDO and SDI pin * @note This configuration can not be changed when I2S is enabled. * @rmtoll CFG2 IOSWP LL_I2S_EnableIOSwap * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_I2S_EnableIOSwap(SPI_TypeDef *SPIx) { LL_SPI_EnableIOSwap(SPIx); } /** * @brief Restore default function for SDO and SDI pin * @note This configuration can not be changed when I2S is enabled. * @rmtoll CFG2 IOSWP LL_I2S_DisableIOSwap * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_I2S_DisableIOSwap(SPI_TypeDef *SPIx) { LL_SPI_DisableIOSwap(SPIx); } /** * @brief Check if SDO and SDI pin are swapped * @rmtoll CFG2 IOSWP LL_I2S_IsEnabledIOSwap * @param SPIx SPI Instance * @retval State of bit (1 or 0) */ __STATIC_INLINE uint32_t LL_I2S_IsEnabledIOSwap(SPI_TypeDef *SPIx) { return LL_SPI_IsEnabledIOSwap(SPIx); } /** * @brief Enable GPIO control * @note This configuration can not be changed when I2S is enabled. * @rmtoll CFG2 AFCNTR LL_I2S_EnableGPIOControl * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_I2S_EnableGPIOControl(SPI_TypeDef *SPIx) { LL_SPI_EnableGPIOControl(SPIx); } /** * @brief Disable GPIO control * @note This configuration can not be changed when I2S is enabled. * @rmtoll CFG2 AFCNTR LL_I2S_DisableGPIOControl * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_I2S_DisableGPIOControl(SPI_TypeDef *SPIx) { LL_SPI_DisableGPIOControl(SPIx); } /** * @brief Check if GPIO control is active * @rmtoll CFG2 AFCNTR LL_I2S_IsEnabledGPIOControl * @param SPIx SPI Instance * @retval State of bit (1 or 0) */ __STATIC_INLINE uint32_t LL_I2S_IsEnabledGPIOControl(SPI_TypeDef *SPIx) { return LL_SPI_IsEnabledGPIOControl(SPIx); } /** * @brief Lock the AF configuration of associated IOs * @note Once this bit is set, the SPI_CFG2 register content can not be modified until a hardware reset occurs. * The reset of the IOLock bit is done by hardware. for that, LL_SPI_DisableIOLock can not exist. * @rmtoll CR1 IOLOCK LL_SPI_EnableIOLock * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_I2S_EnableIOLock(SPI_TypeDef *SPIx) { LL_SPI_EnableIOLock(SPIx); } /** * @brief Check if the the SPI_CFG2 register is locked * @rmtoll CR1 IOLOCK LL_I2S_IsEnabledIOLock * @param SPIx SPI Instance * @retval State of bit (1 or 0) */ __STATIC_INLINE uint32_t LL_I2S_IsEnabledIOLock(SPI_TypeDef *SPIx) { return LL_SPI_IsEnabledIOLock(SPIx); } /** * @brief Set Transfer Bit Order * @note This configuration can not be changed when I2S is enabled. * @rmtoll CFG2 LSBFRST LL_I2S_SetTransferBitOrder * @param SPIx SPI Instance * @param BitOrder This parameter can be one of the following values: * @arg @ref LL_I2S_LSB_FIRST * @arg @ref LL_I2S_MSB_FIRST * @retval None */ __STATIC_INLINE void LL_I2S_SetTransferBitOrder(SPI_TypeDef *SPIx, uint32_t BitOrder) { LL_SPI_SetTransferBitOrder(SPIx, BitOrder); } /** * @brief Get Transfer Bit Order * @rmtoll CFG2 LSBFRST LL_I2S_GetTransferBitOrder * @param SPIx SPI Instance * @retval Returned value can be one of the following values: * @arg @ref LL_I2S_LSB_FIRST * @arg @ref LL_I2S_MSB_FIRST */ __STATIC_INLINE uint32_t LL_I2S_GetTransferBitOrder(SPI_TypeDef *SPIx) { return LL_SPI_GetTransferBitOrder(SPIx); } /** * @brief Start effective transfer on wire * @rmtoll CR1 CSTART LL_I2S_StartTransfer * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_I2S_StartTransfer(SPI_TypeDef *SPIx) { LL_SPI_StartMasterTransfer(SPIx); } /** * @brief Check if there is an unfinished transfer * @rmtoll CR1 CSTART LL_I2S_IsTransferActive * @param SPIx SPI Instance * @retval State of bit (1 or 0) */ __STATIC_INLINE uint32_t LL_I2S_IsActiveTransfer(SPI_TypeDef *SPIx) { return LL_SPI_IsActiveMasterTransfer(SPIx); } /** * @brief Set threshold of FIFO that triggers a transfer event * @note This configuration can not be changed when I2S is enabled. * @rmtoll CFG1 FTHLV LL_I2S_SetFIFOThreshold * @param SPIx SPI Instance * @param Threshold This parameter can be one of the following values: * @arg @ref LL_I2S_FIFO_TH_01DATA * @arg @ref LL_I2S_FIFO_TH_02DATA * @arg @ref LL_I2S_FIFO_TH_03DATA * @arg @ref LL_I2S_FIFO_TH_04DATA * @arg @ref LL_I2S_FIFO_TH_05DATA * @arg @ref LL_I2S_FIFO_TH_06DATA * @arg @ref LL_I2S_FIFO_TH_07DATA * @arg @ref LL_I2S_FIFO_TH_08DATA * @retval None */ __STATIC_INLINE void LL_I2S_SetFIFOThreshold(SPI_TypeDef *SPIx, uint32_t Threshold) { LL_SPI_SetFIFOThreshold(SPIx, Threshold); } /** * @brief Get threshold of FIFO that triggers a transfer event * @rmtoll CFG1 FTHLV LL_I2S_GetFIFOThreshold * @param SPIx SPI Instance * @retval Returned value can be one of the following values: * @arg @ref LL_I2S_FIFO_TH_01DATA * @arg @ref LL_I2S_FIFO_TH_02DATA * @arg @ref LL_I2S_FIFO_TH_03DATA * @arg @ref LL_I2S_FIFO_TH_04DATA * @arg @ref LL_I2S_FIFO_TH_05DATA * @arg @ref LL_I2S_FIFO_TH_06DATA * @arg @ref LL_I2S_FIFO_TH_07DATA * @arg @ref LL_I2S_FIFO_TH_08DATA */ __STATIC_INLINE uint32_t LL_I2S_GetFIFOThreshold(SPI_TypeDef *SPIx) { return LL_SPI_GetFIFOThreshold(SPIx); } /** * @brief Set I2S linear prescaler * @rmtoll I2SCFGR I2SDIV LL_I2S_SetPrescalerLinear * @param SPIx SPI Instance * @param PrescalerLinear Value between Min_Data=0x00 and Max_Data=0xFF * @note PrescalerLinear '1' is not authorized with parity LL_I2S_PRESCALER_PARITY_ODD * @retval None */ __STATIC_INLINE void LL_I2S_SetPrescalerLinear(SPI_TypeDef *SPIx, uint32_t PrescalerLinear) { MODIFY_REG(SPIx->I2SCFGR, SPI_I2SCFGR_I2SDIV, (PrescalerLinear << SPI_I2SCFGR_I2SDIV_Pos)); } /** * @brief Get I2S linear prescaler * @rmtoll I2SCFGR I2SDIV LL_I2S_GetPrescalerLinear * @param SPIx SPI Instance * @retval PrescalerLinear Value between Min_Data=0x00 and Max_Data=0xFF */ __STATIC_INLINE uint32_t LL_I2S_GetPrescalerLinear(SPI_TypeDef *SPIx) { return (uint32_t)(READ_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_I2SDIV) >> SPI_I2SCFGR_I2SDIV_Pos); } /** * @brief Set I2S parity prescaler * @rmtoll I2SCFGR ODD LL_I2S_SetPrescalerParity * @param SPIx SPI Instance * @param PrescalerParity This parameter can be one of the following values: * @arg @ref LL_I2S_PRESCALER_PARITY_EVEN * @arg @ref LL_I2S_PRESCALER_PARITY_ODD * @retval None */ __STATIC_INLINE void LL_I2S_SetPrescalerParity(SPI_TypeDef *SPIx, uint32_t PrescalerParity) { MODIFY_REG(SPIx->I2SCFGR, SPI_I2SCFGR_ODD, PrescalerParity << SPI_I2SCFGR_ODD_Pos); } /** * @brief Get I2S parity prescaler * @rmtoll I2SCFGR ODD LL_I2S_GetPrescalerParity * @param SPIx SPI Instance * @retval Returned value can be one of the following values: * @arg @ref LL_I2S_PRESCALER_PARITY_EVEN * @arg @ref LL_I2S_PRESCALER_PARITY_ODD */ __STATIC_INLINE uint32_t LL_I2S_GetPrescalerParity(SPI_TypeDef *SPIx) { return (uint32_t)(READ_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_ODD) >> SPI_I2SCFGR_ODD_Pos); } /** * @brief Enable the Master Clock Output (Pin MCK) * @rmtoll I2SCFGR MCKOE LL_I2S_EnableMasterClock * @param SPIx SPI Handle * @retval None */ __STATIC_INLINE void LL_I2S_EnableMasterClock(SPI_TypeDef *SPIx) { SET_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_MCKOE); } /** * @brief Disable the Master Clock Output (Pin MCK) * @rmtoll I2SCFGR MCKOE LL_I2S_DisableMasterClock * @param SPIx SPI Handle * @retval None */ __STATIC_INLINE void LL_I2S_DisableMasterClock(SPI_TypeDef *SPIx) { CLEAR_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_MCKOE); } /** * @brief Check if the master clock output (Pin MCK) is enabled * @rmtoll I2SCFGR MCKOE LL_I2S_IsEnabledMasterClock * @param SPIx SPI Instance * @retval State of bit (1 or 0) */ __STATIC_INLINE uint32_t LL_I2S_IsEnabledMasterClock(SPI_TypeDef *SPIx) { return ((READ_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_MCKOE) == (SPI_I2SCFGR_MCKOE)) ? 1UL : 0UL); } /** * @} */ /** @defgroup I2S_LL_EF_FLAG_Management FLAG_Management * @{ */ /** * @brief Check if there enough data in FIFO to read a full packet * @rmtoll SR RXP LL_I2S_IsActiveFlag_RXP * @param SPIx SPI Instance * @retval State of bit (1 or 0) */ __STATIC_INLINE uint32_t LL_I2S_IsActiveFlag_RXP(SPI_TypeDef *SPIx) { return LL_SPI_IsActiveFlag_RXP(SPIx); } /** * @brief Check if there enough space in FIFO to hold a full packet * @rmtoll SR TXP LL_I2S_IsActiveFlag_TXP * @param SPIx SPI Instance * @retval State of bit (1 or 0) */ __STATIC_INLINE uint32_t LL_I2S_IsActiveFlag_TXP(SPI_TypeDef *SPIx) { return LL_SPI_IsActiveFlag_TXP(SPIx); } /** * @brief Get Underrun error flag * @rmtoll SR UDR LL_I2S_IsActiveFlag_UDR * @param SPIx SPI Instance * @retval State of bit (1 or 0) */ __STATIC_INLINE uint32_t LL_I2S_IsActiveFlag_UDR(SPI_TypeDef *SPIx) { return LL_SPI_IsActiveFlag_UDR(SPIx); } /** * @brief Get Overrun error flag * @rmtoll SR OVR LL_I2S_IsActiveFlag_OVR * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_I2S_IsActiveFlag_OVR(SPI_TypeDef *SPIx) { return LL_SPI_IsActiveFlag_OVR(SPIx); } /** * @brief Get TI Frame format error flag * @rmtoll SR TIFRE LL_I2S_IsActiveFlag_FRE * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_I2S_IsActiveFlag_FRE(SPI_TypeDef *SPIx) { return LL_SPI_IsActiveFlag_FRE(SPIx); } /** * @brief Clear Underrun error flag * @rmtoll IFCR UDRC LL_I2S_ClearFlag_UDR * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_I2S_ClearFlag_UDR(SPI_TypeDef *SPIx) { LL_SPI_ClearFlag_UDR(SPIx); } /** * @brief Clear Overrun error flag * @rmtoll IFCR OVRC LL_I2S_ClearFlag_OVR * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_I2S_ClearFlag_OVR(SPI_TypeDef *SPIx) { LL_SPI_ClearFlag_OVR(SPIx); } /** * @brief Clear Frame format error flag * @rmtoll IFCR TIFREC LL_I2S_ClearFlag_FRE * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_I2S_ClearFlag_FRE(SPI_TypeDef *SPIx) { LL_SPI_ClearFlag_FRE(SPIx); } /** * @} */ /** @defgroup I2S_LL_EF_IT_Management IT_Management * @{ */ /** * @brief Enable Rx Packet available IT * @rmtoll IER RXPIE LL_I2S_EnableIT_RXP * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_I2S_EnableIT_RXP(SPI_TypeDef *SPIx) { LL_SPI_EnableIT_RXP(SPIx); } /** * @brief Enable Tx Packet space available IT * @rmtoll IER TXPIE LL_I2S_EnableIT_TXP * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_I2S_EnableIT_TXP(SPI_TypeDef *SPIx) { LL_SPI_EnableIT_TXP(SPIx); } /** * @brief Enable Underrun IT * @rmtoll IER UDRIE LL_I2S_EnableIT_UDR * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_I2S_EnableIT_UDR(SPI_TypeDef *SPIx) { LL_SPI_EnableIT_UDR(SPIx); } /** * @brief Enable Overrun IT * @rmtoll IER OVRIE LL_I2S_EnableIT_OVR * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_I2S_EnableIT_OVR(SPI_TypeDef *SPIx) { LL_SPI_EnableIT_OVR(SPIx); } /** * @brief Enable TI Frame Format Error IT * @rmtoll IER TIFREIE LL_I2S_EnableIT_FRE * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_I2S_EnableIT_FRE(SPI_TypeDef *SPIx) { LL_SPI_EnableIT_FRE(SPIx); } /** * @brief Disable Rx Packet available IT * @rmtoll IER RXPIE LL_I2S_DisableIT_RXP * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_I2S_DisableIT_RXP(SPI_TypeDef *SPIx) { LL_SPI_DisableIT_RXP(SPIx); } /** * @brief Disable Tx Packet space available IT * @rmtoll IER TXPIE LL_I2S_DisableIT_TXP * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_I2S_DisableIT_TXP(SPI_TypeDef *SPIx) { LL_SPI_DisableIT_TXP(SPIx); } /** * @brief Disable Underrun IT * @rmtoll IER UDRIE LL_I2S_DisableIT_UDR * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_I2S_DisableIT_UDR(SPI_TypeDef *SPIx) { LL_SPI_DisableIT_UDR(SPIx); } /** * @brief Disable Overrun IT * @rmtoll IER OVRIE LL_I2S_DisableIT_OVR * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_I2S_DisableIT_OVR(SPI_TypeDef *SPIx) { LL_SPI_DisableIT_OVR(SPIx); } /** * @brief Disable TI Frame Format Error IT * @rmtoll IER TIFREIE LL_I2S_DisableIT_FRE * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_I2S_DisableIT_FRE(SPI_TypeDef *SPIx) { LL_SPI_DisableIT_FRE(SPIx); } /** * @brief Check if Rx Packet available IT is enabled * @rmtoll IER RXPIE LL_I2S_IsEnabledIT_RXP * @param SPIx SPI Instance * @retval State of bit (1 or 0) */ __STATIC_INLINE uint32_t LL_I2S_IsEnabledIT_RXP(SPI_TypeDef *SPIx) { return LL_SPI_IsEnabledIT_RXP(SPIx); } /** * @brief Check if Tx Packet space available IT is enabled * @rmtoll IER TXPIE LL_I2S_IsEnabledIT_TXP * @param SPIx SPI Instance * @retval State of bit (1 or 0) */ __STATIC_INLINE uint32_t LL_I2S_IsEnabledIT_TXP(SPI_TypeDef *SPIx) { return LL_SPI_IsEnabledIT_TXP(SPIx); } /** * @brief Check if Underrun IT is enabled * @rmtoll IER UDRIE LL_I2S_IsEnabledIT_UDR * @param SPIx SPI Instance * @retval State of bit (1 or 0) */ __STATIC_INLINE uint32_t LL_I2S_IsEnabledIT_UDR(SPI_TypeDef *SPIx) { return LL_SPI_IsEnabledIT_UDR(SPIx); } /** * @brief Check if Overrun IT is enabled * @rmtoll IER OVRIE LL_I2S_IsEnabledIT_OVR * @param SPIx SPI Instance * @retval State of bit (1 or 0) */ __STATIC_INLINE uint32_t LL_I2S_IsEnabledIT_OVR(SPI_TypeDef *SPIx) { return LL_SPI_IsEnabledIT_OVR(SPIx); } /** * @brief Check if TI Frame Format Error IT is enabled * @rmtoll IER TIFREIE LL_I2S_IsEnabledIT_FRE * @param SPIx SPI Instance * @retval State of bit (1 or 0) */ __STATIC_INLINE uint32_t LL_I2S_IsEnabledIT_FRE(SPI_TypeDef *SPIx) { return LL_SPI_IsEnabledIT_FRE(SPIx); } /** * @} */ /** @defgroup I2S_LL_EF_DMA_Management DMA_Management * @{ */ /** * @brief Enable DMA Rx * @rmtoll CFG1 RXDMAEN LL_I2S_EnableDMAReq_RX * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_I2S_EnableDMAReq_RX(SPI_TypeDef *SPIx) { LL_SPI_EnableDMAReq_RX(SPIx); } /** * @brief Disable DMA Rx * @rmtoll CFG1 RXDMAEN LL_I2S_DisableDMAReq_RX * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_I2S_DisableDMAReq_RX(SPI_TypeDef *SPIx) { LL_SPI_DisableDMAReq_RX(SPIx); } /** * @brief Check if DMA Rx is enabled * @rmtoll CFG1 RXDMAEN LL_I2S_IsEnabledDMAReq_RX * @param SPIx SPI Instance * @retval State of bit (1 or 0) */ __STATIC_INLINE uint32_t LL_I2S_IsEnabledDMAReq_RX(SPI_TypeDef *SPIx) { return LL_SPI_IsEnabledDMAReq_RX(SPIx); } /** * @brief Enable DMA Tx * @rmtoll CFG1 TXDMAEN LL_I2S_EnableDMAReq_TX * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_I2S_EnableDMAReq_TX(SPI_TypeDef *SPIx) { LL_SPI_EnableDMAReq_TX(SPIx); } /** * @brief Disable DMA Tx * @rmtoll CFG1 TXDMAEN LL_I2S_DisableDMAReq_TX * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_I2S_DisableDMAReq_TX(SPI_TypeDef *SPIx) { LL_SPI_DisableDMAReq_TX(SPIx); } /** * @brief Check if DMA Tx is enabled * @rmtoll CFG1 TXDMAEN LL_I2S_IsEnabledDMAReq_TX * @param SPIx SPI Instance * @retval State of bit (1 or 0) */ __STATIC_INLINE uint32_t LL_I2S_IsEnabledDMAReq_TX(SPI_TypeDef *SPIx) { return LL_SPI_IsEnabledDMAReq_TX(SPIx); } /** * @} */ /** @defgroup I2S_LL_EF_DATA_Management DATA_Management * @{ */ /** * @brief Read Data Register * @rmtoll RXDR . LL_I2S_ReceiveData16 * @param SPIx SPI Instance * @retval 0..0xFFFF */ __STATIC_INLINE uint16_t LL_I2S_ReceiveData16(SPI_TypeDef *SPIx) { return LL_SPI_ReceiveData16(SPIx); } /** * @brief Read Data Register * @rmtoll RXDR . LL_I2S_ReceiveData32 * @param SPIx SPI Instance * @retval 0..0xFFFFFFFF */ __STATIC_INLINE uint32_t LL_I2S_ReceiveData32(SPI_TypeDef *SPIx) { return LL_SPI_ReceiveData32(SPIx); } /** * @brief Write Data Register * @rmtoll TXDR . LL_I2S_TransmitData16 * @param SPIx SPI Instance * @param TxData 0..0xFFFF * @retval None */ __STATIC_INLINE void LL_I2S_TransmitData16(SPI_TypeDef *SPIx, uint16_t TxData) { LL_SPI_TransmitData16(SPIx, TxData); } /** * @brief Write Data Register * @rmtoll TXDR . LL_I2S_TransmitData32 * @param SPIx SPI Instance * @param TxData 0..0xFFFFFFFF * @retval None */ __STATIC_INLINE void LL_I2S_TransmitData32(SPI_TypeDef *SPIx, uint32_t TxData) { LL_SPI_TransmitData32(SPIx, TxData); } /** * @} */ #if defined(USE_FULL_LL_DRIVER) /** @defgroup SPI_LL_EF_Init Initialization and de-initialization functions * @{ */ ErrorStatus LL_I2S_DeInit(SPI_TypeDef *SPIx); ErrorStatus LL_I2S_Init(SPI_TypeDef *SPIx, LL_I2S_InitTypeDef *I2S_InitStruct); void LL_I2S_StructInit(LL_I2S_InitTypeDef *I2S_InitStruct); void LL_I2S_ConfigPrescaler(SPI_TypeDef *SPIx, uint32_t PrescalerLinear, uint32_t PrescalerParity); /** * @} */ #endif /* USE_FULL_LL_DRIVER */ /** * @} */ /** * @} */ #endif /* defined(SPI1) || defined(SPI2) || defined(SPI3) || defined(SPI4) || defined(SPI5) || defined(SPI6) */ /** * @} */ /** * @} */ #ifdef __cplusplus } #endif #endif /* STM32H7xx_LL_SPI_H */